Graph Drawing

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	64 megabytes

Bobo decided to draw a (planar) graph with n vertices conveniently numbered by $1,2, \ldots, n$ on the plane. Edges should be drawn in such a manner that no two edges intersect strictly (i.e. they could still share common ends). The planar graph would consist of m faces, where the i-th face had k_{i} vertices $v_{i, 1}, v_{i, 2}, \ldots, v_{i, k_{i}}$ arranged in couterclockwise order.

In addition, Bobo would like edges to be drawn either vertically or horizontally. Since such drawing was not always possible, Bobo was allowed to subdivide the edges by adding one or more extra vertices in the middle of the edges.
Bobo would like to figure out the minimum number of extra vertices to make the drawing possible.

Input

The first line contains 2 integers $n, m(1 \leq n \leq 200,1 \leq m \leq n-2)$.
The i-th of the following m lines begins with an integer k_{i}, following by k_{i} integers $v_{i, 1}, v_{i, 2}, \ldots, v_{i, k_{i}}$ $\left(3 \leq k_{i} \leq n, 1 \leq v_{i, j} \leq n\right)$.
It is guaranteed that the biconnected graph is valid planar graph with maximum degree no more than 4. Note that biconnected means the graph is connected and still remains connected without any vertices.

Output

An integer denotes the minimum number of extra vertices.

Examples

			standard input		standard output	
4	2				2	
3	1	2	3			
3	4	3	2			
5	1					
5	1	2	3	4	5	

