Dominating Set

Input file:	${\tt standard}$	input
Output file:	standard	output
Time limit:	$2 \ {\rm seconds}$	
Memory limit:	64 megaby	vtes

Bobo had a bipartite graph G = (V, E) with *n* vertices and *m* edges. He would like to choose a subset *D* of vertices, such that for every vertex *v*, either *v* or one of its neighbours is in *D*. Find the number of possible subsets bobo might choose.

Note:

- 1. G is bipartite if and only if G contains no cycles of odd-length.
- 2. w is neighbour of v if and only if u and v are connected by an edge.

Input

The first line contains 2 integers $n, m \ (1 \le n \le 30, 0 \le m \le 225)$.

The *i*-th of the following *m* lines contains 2 integers a_i, b_i , which denotes an edge between the a_i -th and b_i -th vertices $(1 \le a_i, b_i \le n)$.

It is guaranteed that there is no self loops and multiple edges.

Output

An integer denotes the number of subsets bobo might choose.

Examples

standard input	standard output	
4 4	11	
1 2		
2 3		
3 4		
4 1		
4 0	1	