Dominating Set

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	64 megabytes

Bobo had a bipartite graph $G=(V, E)$ with n vertices and m edges. He would like to choose a subset D of vertices, such that for every vertex v, either v or one of its neighbours is in D. Find the number of possible subsets bobo might choose.
Note:

1. G is bipartite if and only if G contains no cycles of odd-length.
2. w is neighbour of v if and only if u and v are connected by an edge.

Input

The first line contains 2 integers $n, m(1 \leq n \leq 30,0 \leq m \leq 225)$.
The i-th of the following m lines contains 2 integers a_{i}, b_{i}, which denotes an edge between the a_{i}-th and b_{i}-th vertices $\left(1 \leq a_{i}, b_{i} \leq n\right)$.

It is guaranteed that there is no self loops and multiple edges.

Output

An integer denotes the number of subsets bobo might choose.

Examples

	standard input		standard output
4	4		11
1	2		
2	3		
3	4	1	1

