Balls and Bins

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 256 megabytes

Bobo had n balls and n bins which were both conveniently labeled by 1, 2, ..., n. Initially, the i-th ball had beautifulness w_i .

He wanted to put balls into bins. Unfortunately, it was not always possible. Bobo got m information. The i-th information (a_i, b_i) said that the a_i -th ball can be put into the b_i -th bin. As one bin can contains at most one ball, Bobo turned to maximize the total beautifulness of balls put into bins.

However, things were quite changeable. There were q changes (k_i, v_i) which meant the beautifulness of the k_i -th ball was changed to v_i . Bobo would like to know the maximum total beautifulness after each change. Note that he was allowed to rearrange as many balls as he wished.

Input

The first line contains 3 integers $n, m, q \ (1 \le n, m \le 2 \times 10^5, 1 \le q \le 500)$.

The second line contains n integers $w_1, w_2, \ldots, w_n \ (|w_i| \le 10^4)$.

The *i*-th of the following m lines contains 2 integers a_i, b_i $(1 \le a_i, b_i \le n)$.

And the *i*-th of the last q lines contains 2 integers k_i, v_i $(1 \le k_i \le n, |v_i| \le 10^4)$.

Output

q integers denote the maximum total beautifulness after each change.

Examples

standard input	standard output
2 2 1	9
5 8	
1 1	
2 1	
1 9	
3 3 3	8
1 2 4	10
1 1	14
2 2	
3 3	
1 2	
2 4	
3 8	