Attack

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	64 megabytes

Bobo lived in a country consisting of n cities conveniently labeled by 1, 2, ..., n. The *i*-th city lived a_i citizens. There were (n - 1) roads to guarantee that each city was reachable from any other cities via roads.

Bobo knew some terrorists were planning to attack his country. The terrorists had q possible attack plans where the *i*-th plan was to destroy k_i roads numbered $c_{i,1}, c_{i,2}, \ldots, c_{i,k_i}$. It was obvious that the country would be separated into $(k_i + 1)$ regions after the attack. For the region consisting of cities $R = \{r_1, r_2, \ldots, r_m\}$, city $h \in R$ would be selected as headquarter to minimize $\sum_{i=1}^m a_{r_i} \cdot \delta(h, r_i)$ where $\delta(i, j)$ is the minimum number of roads needed to travel from city *i* to city *j*. In case of a tie, the city with smaller label would be chosen.

Bobo would like to know the labels of headquarters for each possible plan.

Input

The first line contains 2 integers n, q $(2 \le n \le 2 \times 10^5, 1 \le q \le 2 \times 10^4)$.

The second line contains n integers a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^4)$.

The *i*-th of the following (n-1) lines contains 2 integers $s_i, t_i \ (1 \le s_i, t_i \le n)$, denoting the *i*-th road connecting city s_i and t_i .

The *i*-th of the last q lines contains an integer k_i and k_i distinct integers $c_{i,1}, c_{i,2}, \ldots, c_{i,k_i}$ $(1 \le k_i \le 10, 1 \le c_{i,j} \le n-1).$

Output

The *i*-th of the *q* lines contains $(k_i + 1)$ integers $h_1, h_2, \ldots, h_{k_i+1}$ which denote the label of headquarters after the attack in ascending order.

Examples

standard input	standard output
5 2	1 2
1 1 1 1 1	1 2 3 4 5
1 2	
1 3	
2 4	
2 5	
1 1	
4 1 2 3 4	