Random Arithmetic

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	64 megabytes

Bobo was playing with n integers a_1, a_2, \ldots, a_n . Each time he chose uniformly randomly two integers x, y from them, and replaced them with either x + y or $x \cdot y$ (Thus, there were $n \cdot (n-1)$ outcomes with equal probability after the 1st operation).

After repeated (n-1) times, exactly one integer remained. Bobo would like to know the expectation of the remaining integer.

Input

The first line contains 1 integer $n \ (2 \le n \le 2000)$.

The second line contains n integers a_1, a_2, \ldots, a_n $(0 \le a_i \le 10^9)$.

Output

If the expectation is $\frac{P}{Q}$, output $P \cdot Q^{-1} \mod (10^9 + 7)$.

Note that Q^{-1} is the multiplicative inverse to Q where $Q \cdot Q^{-1} \equiv 1 \pmod{(10^9 + 7)}$.

Examples

standard input	standard output
2	50000005
1 1	
3	25000008
1 2 3	