Pertozavodsk Winter Training Camp 2016

Day 1: SPb SU and SPb AU Contest, Friday, January 29, 2016

Problem A. Random Points on the Circle

Input file: standard input
Output file: standard output
Time limit: $\quad 1.7$ seconds
Memory limit: $\quad 512$ mebibytes

Consider a circle of length L and pick a point on the circle which we will call the origin. In this problem, the coordinate of a point on the circle is the length of the counter-clockwise arc from the origin to this point. So, each point on the circle has a coordinate from 0 (inclusive) to L (exclusive). The distance between two points with coordinates a and b on the circle is the length of the smallest arc between them, that is, $\min (|a-b|, L-|a-b|)$.

You are given $n(1 \leq n \leq 1000000)$ houses with integer coordinates on this circle. The coordinates of the houses are generated by a special pseudorandom generator. The code of the generator is given below. Note that there may be multiple houses at the same position.
You have to choose $k(1 \leq k \leq n)$ points with integer coordinates on the circle and place collectors at these points. Again, there may be multiple collectors and/or houses at the same position.

After that, you have to assign a collector to each of the given n houses. Finally, for each collector, calculate the sum of all distances to the houses assigned to this collector. Your task is to place collectors and assign houses to them so that the maximum of these sums is as small as possible. Calculate and print this value.

Input

In this problem, $L=2^{30}$.
The first line contains two integers n and $k(1 \leq k \leq n \leq 1000000)$. There is also a special condition: if $n \geq 100$, then $10 \leq k \leq \frac{n}{10}$ and $n \bmod k=0$.
The second line contains two integers seed and add ($1 \leq$ seed, $a d d<L$). In all tests, these numbers are chosen uniformly at random. If we denote coordinate of the i-th point as a_{i}, the coordinates can be calculated using the following pseudocode:

1. for (i = 0; i < n; i++) \{
2. seed $=($ seed $* 239017+$ add $) \bmod L$;
3. $\mathrm{a}_{i}=$ seed;
4. \}

Output

Output a single integer: the smallest possible maximum over all collectors of the sum of all distances from this collector to the houses assigned to it.

Examples

	standard input	standard output
10	2	626098570
13	123	
10	3	302532222
13	123	
10	10	123
13	123	

Note

The generator produces the following points: 3107344, 752440587, 778714046, 266135273, 241409356, 201905063, 489905338, 937040197, 1024665608, 579507651.

Be careful with your implementation. The time limit is quite tight.

