## Problem D. Greedy Game

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 1 second |
| Memory limit: | 512 mebibytes |

There are $n$ items and two players. For each player and for each item, the value of the item for this player is known. Denote values of the $i$-th item for the first and the second player as $a_{i}$ and $b_{i}$ correspondingly.

Players take the items in turns. The first player starts the game. The first player is greedy: each turn, he chooses the item which has the maximal $a_{i}$ among the remaining items. If there are several such items, he can take any one of them. What is the maximal possible sum of values $b_{i}$ of items taken by the second player that he can guarantee regardless of the first player's moves?

## Input

The first line contains a single integer $1 \leq n \leq 10^{5}$, the number of items.
The second line contains $n$ numbers, $i$-th is equal to $a_{i}$, the value of the $i$-th item for the first player.
The third line contains $n$ numbers, $i$-th is equal to $b_{i}$, the value of the $i$-th item for the second player.
All values are integers from 1 to $10^{9}$.

## Output

Output a single number: the maximal sum of values $b_{i}$ of items taken by the second player that he can guarantee.

## Example

| standard input |  | standard output |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 |  |  |  | 8 |  |  |  |
| 1 | 2 | 3 | 4 | 5 |  |  |  |
| 2 | 3 | 4 | 5 | 6 |  |  |  |

