Problem H. Points

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	512 mebibytes

You are given *n* triples of non-negative integers a_i , b_i , c_i $(1 \le i \le n)$ and a positive integer $k \le n$. Your task is to find the set of indices $1 \le i_1 < i_2 < \ldots < i_k \le n$ such that $\left(\sum_{j=1}^k a_{i_j}\right)^2 + \left(\sum_{j=1}^k b_{i_j}\right)^2 + \left(\sum_{j=1}^k c_{i_j}\right)^2$ is maximized. Print the maximum possible value of this sum.

Input

The first line of the input contains a positive integer T, the number of test cases.

The first line of each test case consists of two integers n and k $(1 \le k \le n \le 40)$. Each of the next n lines contains one triple of non-negative integers a_i , b_i and c_i $(0 \le a_i, b_i, c_i \le 10^6)$.

It is guaranteed that the sum of all values of n in the input does not exceed 200.

Output

For each test case, on the first line, write one integer: the answer to the problem. On the next line, print k integers $1 \le i_1 < i_2 < \ldots < i_k \le n$ representing the set of indices on which the answer is achieved.

Example

standard input	standard output
2	146
3 1	2
4 2 6	394
497	2 3
642	
3 2	
7 3 2	
824	
4 7 9	