Problem H. Points

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	512 mebibytes

You are given n triples of non-negative integers $a_{i}, b_{i}, c_{i}(1 \leq i \leq n)$ and a positive integer $k \leq n$. Your task is to find the set of indices $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$ such that $\left(\sum_{j=1}^{k} a_{i_{j}}\right)^{2}+\left(\sum_{j=1}^{k} b_{i_{j}}\right)^{2}+\left(\sum_{j=1}^{k} c_{i_{j}}\right)^{2}$ is maximized. Print the maximum possible value of this sum.

Input

The first line of the input contains a positive integer T, the number of test cases.
The first line of each test case consists of two integers n and $k(1 \leq k \leq n \leq 40)$. Each of the next n lines contains one triple of non-negative integers a_{i}, b_{i} and $c_{i}\left(0 \leq a_{i}, b_{i}, c_{i} \leq 10^{6}\right)$.
It is guaranteed that the sum of all values of n in the input does not exceed 200 .

Output

For each test case, on the first line, write one integer: the answer to the problem. On the next line, print k integers $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$ representing the set of indices on which the answer is achieved.

Example

		standard input		standard output
2		146		
3	1		2	
4	2	6	394	
4	9	7	2	3

