Problem K. Two Strings

Input file:	standard input
Output file:	standard output
Time limit:	2.5 seconds
Memory limit:	768 mebibytes

You are given two strings $S = S_0 S_1 \cdots S_{|S|-1}$ and $T = T_0 T_1 \cdots T_{|T|-1}$ consisting of lowercase letters. Here |S| is the length of the string S.

The substring S[l,r] $(0 \le l \le r < |S|)$ of the string $S = S_0 S_1 \cdots S_{|S|-1}$ is the string $S_l S_{l+1} \cdots S_r$.

Define the function F(S, l, r) for the string S and two integers l, r as follows:

 $F(S, l, r) = r - l - \max(l, |S| - r - 1) + 1.$

In other words, F is the length of the substring minus the maximum distance from borders of S to the substring.

Your task is to find a substring S[l, r] such that it occurs in T as substring and the value F(S, l, r) is maximum among all pairs (l, r) $(0 \le l \le r < |S|)$.

Input

The first two lines contain strings S and T, respectively $(1 \le |S|, |T| \le 10^6)$.

Strings S and T consist of lowercase English letters.

Output

If no substring of string S occurs in the string T, print a single string "-1 –1" (without quotes). Otherwise, print two integers l and r such that F(S, l, r) is maximum among all possible pairs (l, r) $(0 \le l \le r < |S|)$ and S[l, r] is a substring of T. If there are several possible pairs, print the lexicographically smallest one.

Examples

standard input	standard output
riveragesmalir	4 5
toaxernaturaln	
aaaaa	0 4
aaaaa	
amkar	-1 -1
zenit	

Note

Pair (l_1, r_1) is lexicographically less than pair (l_2, r_2) if either $l_1 < l_2$, or $l_1 = l_2$ and $r_1 < r_2$.