Pertozavodsk Winter Training Camp 2016

Day 1: SPb SU and SPb AU Contest, Friday, January 29, 2016

Problem K. Two Strings

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2.5 seconds

768 mebibytes

You are given two strings $S=S_{0} S_{1} \cdots S_{|S|-1}$ and $T=T_{0} T_{1} \cdots T_{|T|-1}$ consisting of lowercase letters. Here $|S|$ is the length of the string S.

The substring $S[l, r](0 \leq l \leq r<|S|)$ of the string $S=S_{0} S_{1} \cdots S_{|S|-1}$ is the string $S_{l} S_{l+1} \cdots S_{r}$.
Define the function $F(S, l, r)$ for the string S and two integers l, r as follows:

$$
F(S, l, r)=r-l-\max (l,|S|-r-1)+1 .
$$

In other words, F is the length of the substring minus the maximum distance from borders of S to the substring.

Your task is to find a substring $S[l, r]$ such that it occurs in T as substring and the value $F(S, l, r)$ is maximum among all pairs $(l, r)(0 \leq l \leq r<|S|)$.

Input

The first two lines contain strings S and T, respectively ($1 \leq|S|,|T| \leq 10^{6}$).
Strings S and T consist of lowercase English letters.

Output

If no substring of string S occurs in the string T, print a single string " $-1-1$ " (without quotes). Otherwise, print two integers l and r such that $F(S, l, r)$ is maximum among all possible pairs $(l, r)(0 \leq l \leq r<|S|)$ and $S[l, r]$ is a substring of T. If there are several possible pairs, print the lexicographically smallest one.

Examples

standard input	standard output
riveragesmalir toaxernaturaln	45
aaaaa aaaaa amkar zenit	04

Note

Pair $\left(l_{1}, r_{1}\right)$ is lexicographically less than pair $\left(l_{2}, r_{2}\right)$ if either $l_{1}<l_{2}$, or $l_{1}=l_{2}$ and $r_{1}<r_{2}$.

