ABBA

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

In this problem, we operate with tables of fixed size $h \times w$ consisting of real values. Let's define an addition operation on two tables as their component-wise sum.

A multiplication table for two real vectors $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{h}\right)$ and $\beta=\left(\beta_{1}, \beta_{2} \ldots, \beta_{w}\right)$ is the table $T_{\alpha, \beta}$ where the element at the intersection of i-th row and j-th column is $\alpha_{i} \cdot \beta_{j}$.
You start with a table of size $h \times w$ consisting of zeroes. In one turn, you are allowed to add a multiplication table for two arbitrary real vectors α of length h and β of length w to the current table. Your task is to make the current table equal to a goal table G in the minimum number of turns. What is the minimum number of turns you have to perform?

Input

The first line of input contains two integers h and $w(1 \leq h, w \leq 200)$.
The i-th of the following h lines contain w space-separated integers $a_{i, 1}, a_{i, 2}, \ldots, a_{i, w}\left(-10^{6} \leq a_{i, j} \leq 10^{6}\right)$, where $a_{i, j}$ is the value on the intersection of i-th row and j-th column of the goal table G.

Output

If it's impossible to obtain the goal table G, print " -1 " (without the quotes). Otherwise, output the minimum number of turns you have to perform in order to achieve it.

Examples

		standard input		standard output	
3	5				1
1	2	3	4	5	
2	4	6	8	10	
3	6	9	12	15	
3	3			2	
2	0	2			
0	2	0			
2	0	2			

Note

In the first sample, the table T can be obtained using $\alpha=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$, $\beta=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right)$.
In the second sample, the table T can be obtained as sum of $T_{\alpha_{1}, \beta_{1}}=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$ for vectors $\alpha_{1}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right), \beta_{1}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)$ and $T_{\alpha_{2}, \beta_{2}}=\left(\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right)$ for vectors $\alpha_{2}=\left(\begin{array}{lll}-1 & 1 & -1\end{array}\right)$, $\beta_{2}=\left(\begin{array}{lll}-1 & 1 & -1\end{array}\right)$.

