Green Day

Input file:
Output file:
Time limit:
Memory limit:
standard input standard output
1 second
256 mebibytes

Consider a graph consisting of $n \geq 2$ vertices without loops or parallel edges. Each edge may be colored in one of k colors. We call a coloring proper if edges of each color form a spanning tree of the graph (that is, for each color c, there exists a unique path between each pair of vertices that uses only edges of color $c)$. Denote such spanning tree for color c as T_{c}.
We call a proper coloring safe if for each two colors c and d and for each two distinct vertices u and v, the following statement is correct: $\operatorname{path}_{T_{c}}(u, v) \cap \operatorname{path}_{T_{d}}(u, v)=\{u, v\}$, where $\operatorname{path}_{T}(u, v)$ is the set of all vertices of tree T that lie on the simple path between u and v (including u and v themselves).
Your task is to construct such a graph that its edges are colored in k colors forming a safe proper coloring.

Input

The first and only line of input contains a single positive integer $k(2 \leq k \leq 100)$, the number of colors you should use in your graph.

Output

On the first line, output $n \geq 2$: the number of vertices in your graph.
Then, output k groups consisting of $n-1$ edges representing edges of each color. Output each edge as a pair of integers a_{i}, b_{i} on a separate line $\left(1 \leq a_{i}, b_{i} \leq n, a_{i} \neq b_{i}\right)$.
Your output must satisfy the condition $(n-1) \cdot k \leq 10^{6}$. There must be no parallel edges.
You are allowed to output any valid answer. It's guaranteed that at least one solution exists.

Example

standard input		standard output
2	4	
	1	2
	1	3
	3	4
	4	1
	2	3
	2	4

