Ivan Dorn

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	512 mebibytes

You are given a sequence consisting of n integers $a_{1}, a_{2}, \ldots, a_{n}$. Let's call some contiguous segment of this sequence $a_{l}, a_{l+1}, \ldots, a_{r-1}, a_{r}$ a canyon if $a_{l}=a_{r}$ and for each integer $l \leq x \leq r$, the inequality $a_{x} \leq a_{l}$ holds. In particular, $l=r$ automatically means that the segment is a canyon. The length of a canyon is considered to be equal to $r-l$.

Your task is to answer m queries of the following form: for a given contiguous segment $a_{l}, a_{l+1}, \ldots, a_{r-1}, a_{r}$ defined by its endpoints l and r, find a canyon of maximum length that is a subsegment of this segment.

Input

The first line of input contains two integers n and $m\left(1 \leq n, m \leq 5 \cdot 10^{5}\right)$, the length of the sequence and the number of queries.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(-10^{9} \leq a_{i} \leq 10^{9}\right)$.
Each of the following m lines contains two positive integers l_{i} and r_{i} which describe the queries $\left(1 \leq l_{i} \leq r_{i} \leq n\right)$.

Output

For each of the m queries, print the maximum length of a canyon inside the given segment on a separate line.

Example

standard input	standard output
85	4
43223373	0
17	0
68	1
13	4
36	
18	

Note

In the sample test, the possible maximal canyons for each of the queries are: $(2,6),(6,8),(1,1),(3,4)$ and $(2,6)$.

