Ivan Dorn

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	512 mebibytes

You are given a sequence consisting of n integers a_1, a_2, \ldots, a_n . Let's call some contiguous segment of this sequence $a_l, a_{l+1}, \ldots, a_{r-1}, a_r$ a canyon if $a_l = a_r$ and for each integer $l \leq x \leq r$, the inequality $a_x \leq a_l$ holds. In particular, l = r automatically means that the segment is a canyon. The length of a canyon is considered to be equal to r - l.

Your task is to answer m queries of the following form: for a given contiguous segment $a_l, a_{l+1}, \ldots, a_{r-1}, a_r$ defined by its endpoints l and r, find a canyon of maximum length that is a subsegment of this segment.

Input

The first line of input contains two integers n and m $(1 \le n, m \le 5 \cdot 10^5)$, the length of the sequence and the number of queries.

The second line contains n integers a_1, a_2, \ldots, a_n $(-10^9 \le a_i \le 10^9)$.

Each of the following m lines contains two positive integers l_i and r_i which describe the queries $(1 \le l_i \le r_i \le n)$.

Output

For each of the m queries, print the maximum length of a canyon inside the given segment on a separate line.

Example

standard input	standard output
8 5	4
4 3 2 2 3 3 7 3	0
17	0
6 8	1
1 3	4
3 6	
1 8	

Note

In the sample test, the possible maximal canyons for each of the queries are: (2, 6), (6, 8), (1, 1), (3, 4) and (2, 6).