Jimi Hendrix

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

You are given a tree T consisting of n vertices and n-1 edges. Each edge of the tree is associated with a lowercase English letter c_i .

You are given a string s consisting of lowercase English letters. Your task is to find a simple path in the tree such that the string formed by concatenation of letters associated with edges of this path contains string s as a subsequence, or determine that there exists no such simple path.

Input

The first line of input contains two positive integers n and m $(2 \le n \le 5 \cdot 10^5, 1 \le m \le n-1)$, the number of vertices in the tree and the length of the string s.

The following n-1 lines contain triples u_i, v_i, c_i $(1 \le u_i, v_i \le n, u_i \ne v_i, c_i$ is a lowercase English letter), denoting an edge (u_i, v_i) associated with letter c_i .

The last line contains a string s (|s| = m) consisting of lowercase English letters.

Output

If the desired path exists, output its endpoints a and b. Otherwise, output "-1 -1". If there are several possible answers, you are allowed to output any of them.

Example

standard input	standard output
93	8 3
12a	
2 3 b	
24 a	
4 5 b	
4 6 c	
6 7 d	
68a	
89b	
acb	