Korn

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: $\quad 256$ mebibytes
Consider a connected graph $G=(V, E)$ without loops and parallel edges. Let's define a complete walk starting in vertex v as a sequence of visited vertices $v=p_{0}, p_{1}, p_{2}, \ldots, p_{k}=u$ such that the following conditions are satisfied:

1. For each $i=1,2, \ldots, k$, the unordered pair $\left(p_{i}, p_{i-1}\right) \in E$, that is, each two consecutive vertices are connected by an edge.
2. Each edge (a, b) appears at most once among all $\left(p_{i}, p_{i-1}\right)$, that is, the walk p doesn't pass through the same edge twice.
3. There exists no vertex p_{k+1} that can be appended at the end of the walk such that the previous two conditions are still satisfied.

The vertex u is called the terminal vertex.
The vertex v is called unavoidable if any complete walk starting in v visits all edges in the graph (that is, $k=|E|$), and its terminal vertex is also v.

Your task is to find all unavoidable vertices in a given graph.

Input

The first line of input contains two integers n and $m\left(3 \leq n \leq 2 \cdot 10^{5}, n-1 \leq m \leq 5 \cdot 10^{5}\right)$, the number of vertices and the number of edges in the graph respectively.

The following m lines contain pairs of integers $a_{i}, b_{i}\left(1 \leq a_{i}, b_{i} \leq n, a_{i} \neq b_{i}\right)$, denoting endpoints of i-th edge.

It is guaranteed that the graph contains no loops and no parallel edges, and also that it is connected.

Output

Print the number of unavoidable vertices on the first line of output, and 1-based indices of all unavoidable vertices on the second line in ascending order.

Example

	standard input		standard output
6	8	2	
3	5	1	3

Note

In the sample, for example, vertex 4 is not unavoidable because there exists a complete walk $4,5,2,1,4$ that terminates in 4 but that doesn't visit all edges in the graph.

