Problem C. Jump

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Snuke is standing on an infinitely long road.
The position on this road is represented by a real number.
Snuke can perform N types of jumps. The jump of type i is symmetric with respect to the point a_{i}. That is, if he performs this jump at point x, he will jump to $2 a_{i}-x$).

You are given Q queries. In the i-th query, you are asked to compute the minimum number of jumps Snuke must perform to go from s_{i} to t_{i}. If t_{i} is unreachable from s_{i} by performing a series of jumps, print -1 instead.

Input

First line of the input contains one integer $N(1 \leq N \leq 200)$. Next N lines contain integers a_{i}, one per line $\left(0 \leq a_{1}<\ldots<a_{N} \leq 10^{4}\right)$. Next line contains one integer Q - the number of queries $\left(0 \leq Q \leq 10^{5}\right)$. Each of the next Q lines contains one query and consists of two integers s_{i} and t_{i} $\left(0 \leq s_{i}, t_{i} \leq 10^{4}\right)$.

Output

For each query, print the answer in a single line.

Example

	standard input	
4	-1	
1		-1
2	2	
4	2	
7	-1	
10	-1	
2	3	0
5	6	3
6	0	1
3	7	0
10	3	
7	6	
5	5	
2	10	10
4	10	

