Problem C. Jump

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Snuke is standing on an infinitely long road.

The position on this road is represented by a real number.

Snuke can perform N types of jumps. The jump of type i is symmetric with respect to the point a_i . That is, if he performs this jump at point x, he will jump to $2a_i - x$).

You are given Q queries. In the *i*-th query, you are asked to compute the minimum number of jumps Snuke must perform to go from s_i to t_i . If t_i is unreachable from s_i by performing a series of jumps, print -1 instead.

Input

First line of the input contains one integer N $(1 \le N \le 200)$. Next N lines contain integers a_i , one per line $(0 \le a_1 < \ldots < a_N \le 10^4)$. Next line contains one integer Q — the number of queries $(0 \le Q \le 10^5)$. Each of the next Q lines contains one query and consists of two integers s_i and t_i $(0 \le s_i, t_i \le 10^4)$.

Output

For each query, print the answer in a single line.

standard input	standard output
4	-1
1	-1
2	2
4	2
7	-1
10	-1
2 3	0
5 6	3
6 0	1
37	0
10 3	
7 6	
5 5	
2 10	
4 10	
10 10	

Example