## Problem F. Number Cards

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 2 seconds |
| Memory limit: | 512 mebibytes |

Snuke has $N$ cards with numbers. The $i$-th card contains positive integer $a_{i}$, and the color of this card is $c_{i}$ (in this problem, we represent colors by integers).
Snuke has the following hypothesis about the coloring scheme of these cards:

- Cards with $1 \leq a_{i} \leq M$ are colored by the same color.
- Cards with $M+1 \leq a_{i} \leq 2 M$ are colored by the same color, and this color is different from the color used for $1 \leq a_{i} \leq M$.
- Cards with $2 M+1 \leq a_{i} \leq 3 M$ are colored by the same color, and this color is different from the colors used for $1 \leq a_{i} \leq 2 M$.
- Cards with $3 M+1 \leq a_{i} \leq 4 M$ are colored by the same color, and this color is different from the colors used for $1 \leq a_{i} \leq 3 M$.
- and so on.

How many positive integers $M$ are consistent with all the cards he has? If the number of possibilities of $M$ is infinite, print -1 .

## Input

First line of the input contains one integer $N(1 \leq N \leq 20)$. Each of next $N$ lines contains two integers $a_{i}$ and $c_{i}$ - number and color of one of Snuke's cards, respectively ( $1 \leq a_{i} \leq 10^{9}$, $1 \leq c_{i} \leq 20$ ). It is guaranteed that the sequence $a_{i}$ is strictly increasing.

## Output

Print the answer in a single line.

## Examples

| standard input |  |  |
| :--- | :--- | :--- |
| 4 |  | standard output |
| 27 | 2 | 277 |
| 20004 |  |  |
| 2015 | 4 |  |
| 2100 | 1 | 0 |
| 3 | 1 |  |
| 1 | 2 |  |
| 3 | 1 |  |

