Problem A. Walk of Length 6

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 megabytes

Bobo has an undirected graph with n vertices which are conveniently labeled with 1, 2, ..., n. Let V be the set of vertices and E be the set of edges. He would like to count the number of tuples $(v_1, v_2, ..., v_6)$ where:

- $v_1, v_2, \ldots, v_6 \in V$,
- $\{v_1, v_2\}, \{v_2, v_3\}, \dots, \{v_5, v_6\}, \{v_6, v_1\} \in E;$
- $C = (\{v_1, v_2\}, \{v_2, v_3\}, \dots, \{v_5, v_6\}, \{v_6, v_1\})$ is **not** a simple cycle of length 6.

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:

The first line contains an integer $n \ (1 \le n \le 1000)$.

The *i*-th of the following *n* lines contains a string g_i of length *n* where $g_{i,j}$ denotes the existence of edge $\{i, j\}$ $(g_{i,j} \in \{0, 1\}, g_{i,i} = 0, g_{i,j} = g_{j,i})$.

It is guaranteed that the sum of n does not exceed 1000.

Output

For each test case, output an integer which denotes the number of tuples.

Example

standard input	standard output
3	66
011	128
101	14910
110	
4	
0101	
1010	
0101	
1010	
6	
011111	
101111	
110111	
111011	
111101	
111110	