Problem A. Walk of Length 6

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 megabytes

Bobo has an undirected graph with n vertices which are conveniently labeled with $1,2, \ldots, n$. Let V be the set of vertices and E be the set of edges. He would like to count the number of tuples ($v_{1}, v_{2}, \ldots, v_{6}$) where:

- $v_{1}, v_{2}, \ldots, v_{6} \in V$,
- $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{5}, v_{6}\right\},\left\{v_{6}, v_{1}\right\} \in E ;$
- $\mathcal{C}=\left(\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{5}, v_{6}\right\},\left\{v_{6}, v_{1}\right\}\right)$ is not a simple cycle of length 6 .

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains an integer $n(1 \leq n \leq 1000)$.
The i-th of the following n lines contains a string g_{i} of length n where $g_{i, j}$ denotes the existence of edge $\{i, j\}\left(g_{i, j} \in\{0,1\}, g_{i, i}=0, g_{i, j}=g_{j, i}\right)$.
It is guaranteed that the sum of n does not exceed 1000 .

Output

For each test case, output an integer which denotes the number of tuples.

Example

	standard input
	standard output
3	66
101	128
110	14910
4	
0101	
1010	
0101	
1010	
6	
011111	
101111	
110111	
111011	
111101	
111110	

