Problem A. Compressed LCS

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
5 seconds
512 megabytes

Bobo has two integer sequences A and B, both in compressed form. $A=c_{1}^{a_{1}} c_{2}^{a_{2}} \ldots c_{n}^{a_{n}}$ means that A begins with a_{1} copies of the integer c_{1}, followed by a_{2} copies of the integer c_{2}, a_{3} copies of the integer c_{3}, and so on. $B=d_{1}^{b_{1}} d_{2}^{b_{2}} \ldots d_{m}^{b_{m}}$ is of similar format.
Bobo would like to find the LCS (longest common subsequence) for A and B. Recall that sequence C is a subsequence of A if and only if C can be obtained by deleting some (maybe all, maybe none) elements from A.

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains two integers n and $m(1 \leq n, m \leq 2000)$.
The i-th of the following n lines contains two integers c_{i} and a_{i}. And the i-th of the last m lines contains two integers d_{i} and b_{i}. The constraints are: $1 \leq a_{i}, b_{i}, c_{i}, d_{i}, \sum_{i=1}^{n} a_{i}, \sum_{i=1}^{m} b_{i} \leq 10^{9}, c_{i} \neq c_{i-1}, d_{i} \neq d_{i-1}$.
It is guaranteed that the sum of n and the sum of m both do not exceed 2000 .

Output

For each test case, output an integer which denotes the length of the LCS.

Example

	standard input		standard output	
1	3		2	
1	2		3	
1	1		999	
2	1			
1	2			
4	4			
1	1			
2	1			
3	1			
4	1			
1	1			
3	1			
2	1			
4	1			
1	1			
1000000000	999			
1000000000	1000			

