Problem A. Welcome to ICPCCamp 2017

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 megabytes

ICPCCamp teams are often selected by a mysterious (X, Y)-rule described in a blog (?).

There are (n+1) selection contests held to choose *ICPCCamp team* among *m* teams conveniently labeled with $1, 2, \ldots, m$. The number of teams attending the *i*-th contest is k_i . As the last (the (n+1)-th) contest called EasyCamp-Final is very important, $k_{n+1} = m$ always holds. The scoreboard of the *i*-th contest is $r_{i,1}, r_{i,2}, \ldots, r_{i,k_i}$ which indicates that team $r_{i,j}$ has rank *j* in the contest.

The (X, Y)-rule works as follows. Firstly, two non-negative integers X and Y and a permutation $P = \{p_1, p_2, \ldots, p_n\}$ of $\{1, 2, \ldots, n\}$ are chosen. After that, the first X + Y distinct teams in the list $\{r_{n+1,1}, r_{n+1,2}, \ldots, r_{n+1,Y}, r_{p_1,1}, r_{p_2,1}, \ldots, r_{p_n,1}, r_{p_1,2}, r_{p_2,2}, \ldots, r_{p_n,2}, \ldots\}$ will be selected as *ICPCCamp* team. In other words, the list goes in the following order: the first Y EasyCamp-Final teams, then the top teams from the first n contests in the order defined by P, then the second teams from the first n contests in the same order, and so on.

Bobo would like to know the number of possible sets of *ICPCCamp teams* modulo $(10^9 + 7)$ if he can choose X, Y and P arbitrarily.

Wish you enjoy yourself in the upcoming World Finals!

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:

The first line contains two integers n and m $(0 \le n \le 2 \cdot 10^5, 1 \le m \le 2 \cdot 10^5)$.

The *i*-th of following *n* lines contains an integer k_i followed by k_i integers $r_{i,1}, r_{i,2}, \ldots, r_{i,k_i}$ $(1 \le k_i \le m)$.

The last line contains m integers $r_{n+1,1}, r_{n+1,2}, \ldots, r_{n+1,m}$ $(1 \le r_{i,j} \le m, \text{ and for each } i, \text{ the numbers } \{r_{i,1}, r_{i,2}, \ldots, r_{i,k_i}\}$ are distinct).

It is guaranteed that both the sum of k_i and the sum of m do not exceed $2 \cdot 10^5$.

Output

For each test case, output an integer which denotes the number of sets modulo $(10^9 + 7)$.

Example

standard input	standard output
2 3	5
2 1 3	4
3 2 1 3	
2 1 3	
03	
1 2 3	