Problem A. Welcome to ICPCCamp 2017

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 megabytes

ICPCCamp teams are often selected by a mysterious (X, Y)-rule described in a blog (?).
There are $(n+1)$ selection contests held to choose ICPCCamp team among m teams conveniently labeled with $1,2, \ldots, m$. The number of teams attending the i-th contest is k_{i}. As the last (the ($n+1$)-th) contest called EasyCamp-Final is very important, $k_{n+1}=m$ always holds. The scoreboard of the i-th contest is $r_{i, 1}, r_{i, 2}, \ldots, r_{i, k_{i}}$ which indicates that team $r_{i, j}$ has rank j in the contest.
The (X, Y)-rule works as follows. Firstly, two non-negative integers X and Y and a permutation $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ of $\{1,2, \ldots, n\}$ are chosen. After that, the first $X+Y$ distinct teams in the list $\left\{r_{n+1,1}, r_{n+1,2}, \ldots, r_{n+1, Y}, r_{p_{1}, 1}, r_{p_{2}, 1}, \ldots, r_{p_{n}, 1}, r_{p_{1}, 2}, r_{p_{2}, 2}, \ldots, r_{p_{n}, 2}, \ldots\right\}$ will be selected as ICPCCamp team. In other words, the list goes in the following order: the first Y EasyCamp-Final teams, then the top teams from the first n contests in the order defined by P, then the second teams from the first n contests in the same order, and so on.
Bobo would like to know the number of possible sets of ICPCCamp teams modulo $\left(10^{9}+7\right)$ if he can choose X, Y and P arbitrarily.
Wish you enjoy yourself in the upcoming World Finals!

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains two integers n and $m\left(0 \leq n \leq 2 \cdot 10^{5}, 1 \leq m \leq 2 \cdot 10^{5}\right)$.
The i-th of following n lines contains an integer k_{i} followed by k_{i} integers $r_{i, 1}, r_{i, 2}, \ldots, r_{i, k_{i}}\left(1 \leq k_{i} \leq m\right)$.
The last line contains m integers $r_{n+1,1}, r_{n+1,2}, \ldots, r_{n+1, m}\left(1 \leq r_{i, j} \leq m\right.$, and for each i, the numbers $\left\{r_{i, 1}, r_{i, 2}, \ldots, r_{i, k_{i}}\right\}$ are distinct).
It is guaranteed that both the sum of k_{i} and the sum of m do not exceed $2 \cdot 10^{5}$.

Output

For each test case, output an integer which denotes the number of sets modulo $\left(10^{9}+7\right)$.

Example

	standard input			standard output
2	3		5	
2	1	3	4	
3	2	1	3	
2	1	3		
0	3			
1	2	3		

