Problem A. Connected Spanning Subgraph

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 mebibytes

Bobo has a connected undirected graph G with n vertices and m edges where vertices are conveniently labeled with $1,2, \ldots, n$.

Bobo chooses a non-empty subset of edges such that the graph with the chosen edges is still connected. He would like to know the number of such subsets modulo 2 .
Note that a graph is connected if, for any two vertices a and b, there exists a path which connects a and b.

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains two integers n and $m\left(2 \leq n \leq 2 \cdot 10^{5}, 1 \leq m \leq 2 \cdot 10^{5}\right)$.
The i-th of the following m lines contains two integers a_{i} and b_{i} which denote an edge between vertices a_{i} and b_{i}.
It is guaranteed that the sum of all m does not exceed $2 \cdot 10^{5}$, and all the given graphs are connected.

Output

For each test case, output an integer which denotes the remainder modulo 2.

Example

	standard input		standard output
2	1	1	
1	2		1
3	2		
1	2		
2	3		
3	3		
1	2		
2	3		
3	1		

