Problem A. Power of Power Partition Function

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 mebibytes

Let m be a fixed integer such that $m \geq 2$. For a positive integer n, let $b_{m}(n)$ denote the number of ways of writing n as a sum of powers of m using non-negative exponents with repetitions allowed and the order of the summands not being taken into account. We also set $b_{m}(0)=1$ (there is one empty sum).
For example, the first 10 terms of $\left\{b_{2}(n)\right\}$ are $\{1,1,2,2,4,4,6,6,10,10\}$, and the first 10 terms of $\left\{b_{3}(n)\right\}$ are $\{1,1,1,2,2,2,3,3,3,5\}$.
Let $c_{m}^{k}(n)$ be the k-th convolution power of $b_{m}(n)$, which is defined as follows:

$$
c_{m}^{k}(n)= \begin{cases}b_{m}(n), & k=1 \\ \sum_{i=0}^{n} b_{m}(i) \cdot c_{m}^{k-1}(n-i), & k \geq 2\end{cases}
$$

Given n, m and k, Bobo would like to find the value of

$$
f(n)=\left(\sum_{i=0}^{n} c_{m}^{k}(i)\right) \bmod \left(10^{9}+7\right)
$$

Input

The first line contains three integers n, m and $k\left(0 \leq n \leq 10^{18}, 2 \leq m \leq 10^{18}, 1 \leq k \leq 10\right)$.

Output

Output an integer denoting the value of $f(n)$.

Examples

standard input	standard output
021	1
1023	2700
100210	490796617

