Problem A. Maximum Flow

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Bobo has an undirected graph with (2n + 2) vertices conveniently labeled with the following pairs of integers: $(0,0), (0,1), \ldots, (0,n), (1,0), (1,1), \ldots, (1,n)$. The graph has three classes of edges.

- The edges of the first class connect vertices (0, i-1) and (0, i) with capacity a_i for $i \in \{1, 2, ..., n\}$.
- The edges of the second class connect vertices (1, i-1) and (1, i) with capacity b_i for $i \in \{1, 2, ..., n\}$.
- The edges of the third class connect vertices $(0, \lfloor \frac{i-1}{2} \rfloor)$ and $(1, \lfloor \frac{i}{2} \rfloor)$ with capacity c_i for $i \in \{1, 2, \ldots, 2n+1\}$.

Bobo would like to find the maximum flow from vertex (0,0) to vertex (1,n).

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:

The first line contains an integer $n \ (1 \le n \le 5 \cdot 10^5)$.

The second line contains n integers a_1, a_2, \ldots, a_n .

The third line contains n integers b_1, b_2, \ldots, b_n .

The fourth line contains (2n+1) integers $c_1, c_2, \ldots, c_{2n+1}$.

The constraints are: $1 \le a_i, b_i, c_i \le 10^9$.

It is guaranteed that the number of test cases does not exceed 10^5 , and the sum of all n does not exceed $5 \cdot 10^5$.

Output

For each test case, output an integer which denotes the maximum flow.

Example

standard input	standard output
1	5
2	6
2	
1 3 1	
3	
1 4 7	
258	
2332124	