## Problem A. Maximum Flow

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 2 seconds |
| Memory limit: | 512 mebibytes |

Bobo has an undirected graph with $(2 n+2)$ vertices conveniently labeled with the following pairs of integers: $(0,0),(0,1), \ldots,(0, n),(1,0),(1,1), \ldots,(1, n)$. The graph has three classes of edges.

- The edges of the first class connect vertices $(0, i-1)$ and $(0, i)$ with capacity $a_{i}$ for $i \in\{1,2, \ldots, n\}$.
- The edges of the second class connect vertices $(1, i-1)$ and $(1, i)$ with capacity $b_{i}$ for $i \in\{1,2, \ldots, n\}$.
- The edges of the third class connect vertices $\left(0,\left\lfloor\frac{i-1}{2}\right\rfloor\right)$ and $\left(1,\left\lfloor\frac{i}{2}\right\rfloor\right)$ with capacity $c_{i}$ for $i \in\{1,2, \ldots, 2 n+1\}$.

Bobo would like to find the maximum flow from vertex $(0,0)$ to vertex $(1, n)$.

## Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains an integer $n\left(1 \leq n \leq 5 \cdot 10^{5}\right)$.
The second line contains $n$ integers $a_{1}, a_{2}, \ldots, a_{n}$.
The third line contains $n$ integers $b_{1}, b_{2}, \ldots, b_{n}$.
The fourth line contains $(2 n+1)$ integers $c_{1}, c_{2}, \ldots, c_{2 n+1}$.
The constraints are: $1 \leq a_{i}, b_{i}, c_{i} \leq 10^{9}$.
It is guaranteed that the number of test cases does not exceed $10^{5}$, and the sum of all $n$ does not exceed $5 \cdot 10^{5}$.

## Output

For each test case, output an integer which denotes the maximum flow.

## Example

|  |  |  | standard input |  | standard output |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 |  |  |  |  |  |
| 2 |  |  |  |  | 6 |
| 2 |  |  |  |  |  |
| 1 | 3 | 1 |  |  |  |
| 3 |  |  |  |  |  |
| 1 | 4 | 7 |  |  |  |
| 2 |  |  |  |  |  |
| 2 | 5 |  |  |  |  |
| 2 | 3 | 3 | 2 | 2 |  |

