Problem A. Rectangles Inside Rectangle

Input file:
Output file:
Time limit:
Memory limit
standard input
standard output
1 second
512 mebibytes

Bobo has a large rectangle with lower left and upper right corners at $(0,0)$ and $\left(w, 10^{6}\right)$. He also has n small axis-parallel rectangles inside the large rectangle. The weight of the i-th rectangle is v_{i}. For each rectangle, either its left border or its right border (but not both) coincides with the left or right side of the large rectangle.
Bobo would like to choose a subset of small rectangles in such a manner that the rectangles may touch each other, but they do not overlap (that is, there are no points that belong to the interior of more than one rectangle). Among all the possibilities, he wants the one with the maximum possible sum of weights.

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains two integers n and $w\left(1 \leq n \leq 2000,2 \leq w \leq 10^{6}\right)$ denoting the number of small rectangles and the width of the large rectangle.
The i-th of the following n lines contains five integers type $e_{i}, l_{i}, a_{i}, b_{i}$ and v_{i} (type $i_{i} \in\{0,1\}$, $0 \leq a_{i}<b_{i} \leq 10^{6}, 1 \leq l_{i}<w, 0 \leq v_{i} \leq 10^{6}$) where v_{i} is the weight of the i-th rectangle. Here, type $_{i}=0$ means the lower left and upper right corner of the i-th rectangle are ($0, a_{i}$) and $\left(l_{i}, b_{i}\right)$, while type $_{i}=1$ means the lower left and upper right corner of the i-th rectangle are $\left(w-l_{i}, a_{i}\right)$ and $\left(w, b_{i}\right)$.

It is guaranteed that for all $1 \leq i<j \leq n, a_{i} \neq a_{j}, a_{i} \neq b_{j}, b_{i} \neq a_{j}$ and $b_{i} \neq b_{j}$. Additionally, the sum of all n does not exceed 2000 .

Output

For each test case, output an integer which denotes the maximum sum of weights.

Example

	standard input							standard output
3	10			100				
0	3	1	6	12				
0	3	3	4	100				
1	9	2	5	11				
3	10							
0	3	1	6	12				
0	1	3	4	5				
1	9	2	5	11				
6	5							
1	1	17	32	4				
0	3	1	18	7				
1	3	4	8	12				
1	2	15	20	14				
1	1	30	33	16				
1	4	2	16	13				

Note

For the third test, Bobo can choose the 3 -rd, 4 -th and 5 -th rectangles.

