Problem A. Cute Panda

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

There are n pandas numbered from 1 to n, i-th of them has a_{i} donuts. There are also n bins numbered from 1 to n, i-th of them can hold b_{i} donuts. For any i from 1 to n, i-th panda can distribute his donuts to i-th and $(i \bmod n+1)$-th bin.
Can you find a way to maximize the number of distributed donuts?

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains an integer $n\left(3 \leq n \leq 10^{6}\right)$.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i} \leq 10^{9}\right)$.
The third line contains n integers $b_{1}, b_{2}, \ldots, b_{n}\left(0 \leq b_{i} \leq 10^{9}\right)$.
It is guaranteed that the sum of all n does not exceed 10^{6}.

Output

For each test case, output an integer which denotes the maximum number of distributed donuts.

Example

			standard input		standard output	
5					11	
8	4	8	3	10	13	
1	0	4	5	1		
5						
9	4	10	0	4		
3	5	2	2	1		

