Problem A. Prime Tree

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: $\quad 512$ mebibytes

Bobo proposes a multiplication operation on rooted trees.
Let A and B be two arbitrary rooted trees. Then $T=A \cdot B$ is built by making a copy of B for each vertex $x \in A$ and merging the root of this copy with x (see the following figure for more details). We then call A and B factors of T.

Apparently, we have $T \cdot \mathbf{1}=\mathbf{1} \cdot T=T$, where $\mathbf{1}$ is the rooted tree with only one vertex. So , $\mathbf{1}$ is a factor of every rooted tree, and every rooted tree is a factor of itself. And if a rooted tree T only has T and $\mathbf{1}$ as his factors, we call T a prime tree.

Bobo has a rooted tree T with n nodes which are conveniently labeled with $1,2, \ldots, n$. He wants to factor T into multiplication of as many prime trees as possible (that is, find an equation $T=T_{1} \cdot T_{2} \cdots T_{m}$ where $T_{i}(1 \leq i \leq m)$ are prime trees and m is maximum).
Note that $\mathbf{1}$ is not a prime tree.

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains an integer n, the number of nodes $\left(2 \leq n \leq 10^{6}\right)$.
The second line contains $(n-1)$ integers $p_{2}, p_{3}, \ldots, p_{n}$, where p_{i} is the parent of the i-th node $\left(1 \leq p_{i} \leq i-1\right)$.
It is guaranteed that the sum of all n does not exceed 10^{6}.

Output

For each test case, output an integer denoting the maximum number of prime factors.

Example

standard input	standard output
12	3
111122455610	1
3	2
11	1
6	
11123	
13	
111223345678	

