Problem A. Hamiltonian k-vertex-connected Graph

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 mebibytes

A graph (other than a complete graph) has connectivity k if k is the size of the smallest subset of vertices such that the graph becomes disconnected if you delete them.
A connected undirected graph G is called Hamiltonian if it has a Hamiltonian cycle: a cycle that visits each vertex exactly once (except for the vertex that is both the start and the end, which is visited twice).

Bobo would like to construct a Hamiltonian graph with n vertices which has connectivity k. Also, the number of edges in the graph should be minimum possible.

Input

The first line contains two integers n and k where n is the number of vertices in the graph $(3 \leq n \leq 100$, $1 \leq k \leq n-2$).

Output

If there is no such graph, output -1 on a single line. Otherwise, output an integer m denoting the minimum number of edges. Then in each of the next m lines, output two integers x and $y(1 \leq x, y \leq n, x \neq y)$ denoting an edge in the graph. In the following line, output a permutation of integers $1,2, \ldots, n$ denoting a Hamiltonian cycle in the graph.

Example

	standard input		standard output	
42	4			
	1	2		
	2	3		
	3	4		
	4	1		
	1	2	3	4

