Problem A. Defense Tower

Input file: standard input
Output file: standard output
Time limit: 12 seconds
Memory limit: $\quad 512$ mebibytes

In ICPCCamp, there are n cities conveniently labeled with $1,2, \ldots, n$, connected by $(n-1)$ bidirectional roads. It is guaranteed that there is exactly one path between any two different cities.
In each city i, there is a defense tower with power a_{i}, built in the order $n,(n-1), \ldots, 1$. The towers are numbered the same as the cities. Therefore, tower n is the oldest tower while tower 1 is the newest. The effect of tower i on city j is defined as eff $(i, j)=a_{i}-\delta(i, j)$. Here, $\delta(i, j)$ is the number of roads between cities i and j. The protector of city j is the tower with maximum effect on it. If several towers have the same effect on a single city, the oldest one is chosen as the protector of this city.

Yuuka issues q commands to upgrade the power of the defense towers, where the k-th command is to add d_{k} points of power to the tower w_{k}. After each command, she would like to know the sum of protectors' labels for all cities. Note that the newly upgraded tower becomes the newest tower automatically.
However, there is a twist. Upgrading a tower is a costly operation. If the tower being upgraded is not even the protector for its own city, or $d_{k}=0$, the upgrade command is ignored.

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains two integers n and $q\left(1 \leq n, q \leq 10^{5}\right)$.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i} \leq 10^{9}\right)$.
The i-th of the following $(n-1)$ lines contains two integers u_{i} and v_{i} which denote a road between cities u_{i} and $v_{i}\left(1 \leq u_{i}, v_{i} \leq n\right)$. It is guaranteed that there is exactly one path between any two different cities. The k-th of the last q lines contains two integers w_{k} and $d_{k}\left(1 \leq w_{k} \leq n, 0 \leq d_{k} \leq 10^{9}\right)$.
It is guaranteed that both the sum of all n and the sum of all q do not exceed 10^{5}.

Output

For each test case, output q integers $s_{1}, s_{2}, \ldots, s_{q}$, where s_{k} denotes the sum of protectors' labels after the k-th command.

Example

	standard input	
3	3	4
1	1	0
1	3	4
2	3	4
1	2	8
2	2	8
3	1000000000	
4	2	
2	4	4
4	1	
4	2	
3	1	
2	4	
2	3	

