Problem A. Defense Tower

Input file:	standard input
Output file:	standard output
Time limit:	12 seconds
Memory limit:	512 mebibytes

In ICPCCamp, there are n cities conveniently labeled with 1, 2, ..., n, connected by (n-1) bidirectional roads. It is guaranteed that there is exactly one path between any two different cities.

In each city *i*, there is a defense tower with power a_i , built in the order $n, (n-1), \ldots, 1$. The towers are numbered the same as the cities. Therefore, tower *n* is the oldest tower while tower 1 is the newest. The *effect* of tower *i* on city *j* is defined as *eff*(*i*, *j*) = $a_i - \delta(i, j)$. Here, $\delta(i, j)$ is the number of roads between cities *i* and *j*. The *protector* of city *j* is the tower with maximum effect on it. If several towers have the same effect on a single city, the oldest one is chosen as the protector of this city.

Yuuka issues q commands to upgrade the power of the defense towers, where the k-th command is to add d_k points of power to the tower w_k . After each command, she would like to know the sum of protectors' labels for all cities. Note that the newly upgraded tower becomes the newest tower automatically.

However, there is a twist. Upgrading a tower is a costly operation. If the tower being upgraded is not even the protector for its own city, or $d_k = 0$, the upgrade command is ignored.

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:

The first line contains two integers n and q $(1 \le n, q \le 10^5)$.

The second line contains n integers a_1, a_2, \ldots, a_n $(0 \le a_i \le 10^9)$.

The *i*-th of the following (n-1) lines contains two integers u_i and v_i which denote a road between cities u_i and v_i $(1 \le u_i, v_i \le n)$. It is guaranteed that there is exactly one path between any two different cities. The *k*-th of the last *q* lines contains two integers w_k and d_k $(1 \le w_k \le n, 0 \le d_k \le 10^9)$.

It is guaranteed that both the sum of all n and the sum of all q do not exceed 10^5 .

Output

For each test case, output q integers s_1, s_2, \ldots, s_q , where s_k denotes the sum of protectors' labels after the k-th command.

Example

standard input	standard output
3 3	4
1 1 0	4
1 3	4
2 3	8
1 2	8
2 2	
3 100000000	
4 2	
2444	
4 1	
4 2	
3 1	
2 4	
2 3	