Problem A. Eulerian Orientation

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 512 mebibytes

It is well known that an undirected graph is *eulerian* if and only if each vertex has an even degree.

Yuuka has an undirected graph with n vertices and m edges. The vertices are conveniently labeled with $1, 2, \ldots, n$. All edges are initially blue. Yuuka plans to paint some of the edges red, and leave other edges blue. If the subgraph formed by the red edges is *eulerian*, she will add x^2 to the counter, where x is the number of red edges.

Let the counter account for all 2^m ways to paint the edges. Yuuka would like to know the total value of the counter modulo $(10^9 + 7)$.

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:

The first line contains two integers n and m $(1 \le n \le 2 \cdot 10^5, 0 \le m \le 2 \cdot 10^5)$.

The *i*-th of the following m lines contains two integers a_i and b_i which denote an edge between vertices a_i and b_i $(1 \le a_i, b_i \le n)$.

It is guaranteed that neither the sum of all n nor the sum of all m exceeds $2 \cdot 10^5$.

Output

For each test case, output an integer which denotes the result.

Example

standard input	standard output
4 4	9
1 2	54
1 3	14
1 4	
2 3	
6 6	
1 2	
2 3	
3 1	
4 5	
5 6	
6 4	
2 3	
1 1	
1 2	
1 2	