Problem A. Eulerian Orientation

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

It is well known that an undirected graph is eulerian if and only if each vertex has an even degree.
Yuuka has an undirected graph with n vertices and m edges. The vertices are conveniently labeled with $1,2, \ldots, n$. All edges are initially blue. Yuuka plans to paint some of the edges red, and leave other edges blue. If the subgraph formed by the red edges is eulerian, she will add x^{2} to the counter, where x is the number of red edges.
Let the counter account for all 2^{m} ways to paint the edges. Yuuka would like to know the total value of the counter modulo $\left(10^{9}+7\right)$.

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains two integers n and $m\left(1 \leq n \leq 2 \cdot 10^{5}, 0 \leq m \leq 2 \cdot 10^{5}\right)$.
The i-th of the following m lines contains two integers a_{i} and b_{i} which denote an edge between vertices a_{i} and $b_{i}\left(1 \leq a_{i}, b_{i} \leq n\right)$.
It is guaranteed that neither the sum of all n nor the sum of all m exceeds $2 \cdot 10^{5}$.

Output

For each test case, output an integer which denotes the result.

Example

	standard input		standard output
4	4		9
1	2		14
1	3		
1	4		
2	3		
6	6		
1	2		
2	3		
3	1		
4	5		
5	6		
6	4		
2	3	1	
1	2		
1	2		

