Problem A. Tube Master II

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Yuuka is playing "Tube Master". The game field is divided into $n \times m$ cells and $(n+1) \times (m+1)$ crossings connected by $(n+1) \times m$ horizontal tubes and $n \times (m+1)$ vertical ones. The cells are conveniently labeled with (i, j) for $1 \le i \le n$, $1 \le j \le m$, and the crossings are labeled with (i, j) for $1 \le i \le (n+1)$, $1 \le j \le (m+1)$. Additionally, each cell (i, j) contains an integer $count_{i,j}$.

_			
	2	3	2
	3	0	3
	2	3	2

The above figure shows a game field with n = m = 3 (the third sample).

Yuuka decides to use some of the tubes. However, the game poses several weird restrictions.

- 1. Either 0 or 2 tubes connected to each crossing are used.
- 2. No two consecutive horizontal tubes are used simultaneously, and no consecutive vertical tubes are used simultaneously. Two tubes are consecutive if and only if they share the same crossing.
- 3. Exactly $count_{i,j}$ tubes surrounding cell (i, j) are used.

Using the tube connecting crossing (i, j) and (i, j + 1) costs $a_{i,j}$, and using the tube connecting crossing (i, j) and (i + 1, j) costs $b_{i,j}$. Yuuka would like to find a configuration satisfying the above constraints with the minimum possible total cost.

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:

The first line contains two integers n and m $(1 \le n, m \le 100)$.

The *i*-th of the following *n* lines contains *m* integers $count_{i,1}, count_{i,2}, \ldots, count_{i,m}$ $(0 \le count_{i,j} \le 4)$.

The *i*-th of the next (n + 1) lines contains *m* integers $a_{i,1}, a_{i,2}, \ldots, a_{i,m}$.

The *i*-th of the last *n* lines contains (m + 1) integers $b_{i,1}, b_{i,2}, \ldots, b_{i,m+1}$.

The constraints are: $1 \le a_{i,j}, b_{i,j} \le 10^9$.

It is guaranteed that the total sum of $n \cdot m$ in all test cases does not exceed 10^4 .

Output

For each test case, output an integer which denotes the minimum cost of the configuration. If there is no valid configuration, output "-1" instead.

Example

standard input	standard output
1 3	8
4 2 4	-1
1 1 1	79
1 1 1	
1 1 1 1	
1 2	
3 3	
1 1	
1 1	
1 1 1	
3 3	
232	
303	
232	
1 2 3	
4 5 6	
789	
11 12 13	
1 2 3 4	
5678	
9 10 11 12	