Problem A. Median on Binary Tree

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Yuuka has a binary tree with vertices which are conveniently labeled with 1, 2, ..., n. For each $i \ge 2$, there is an edge between vertices i and $\lfloor i/2 \rfloor$. The *i*-th vertex has weight w_i associated with it, and all weights are distinct.

Consider a subtree of the given tree (a subgraph which is itself a tree) which consists of vertices v_1, v_2, \ldots, v_k such that $w_{v_1} < w_{v_2} < \cdots < w_{v_k}$. The *a*-median of this subtree is then $w_{v_{\lfloor (k-a+1)/2 \rfloor}}$ for $0 \le a < k$.

For each $a \in \{0, 1, 2, ..., n-1\}$, find the largest *a*-median among all subtrees of the given tree.

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:

The first line contains an integer $n \ (1 \le n \le 2 \cdot 10^5)$.

The second line contains n integers w_1, w_2, \ldots, w_n $(1 \le w_i \le n, \text{ and the numbers } w_1, w_2, \ldots, w_n \text{ are all distinct}).$

It is guaranteed that the sum of all n does not exceed $2 \cdot 10^5$.

Output

For each test case, output n integers $M_0, M_1, \ldots, M_{n-1}$ where M_a denotes the largest a-median.

Example

standard input	standard output
5	52211
1 2 3 4 5	10 9 5 4 4 3 3 2 2 1
10	
9 10 4 2 3 5 7 1 8 6	