Problem A. Median on Binary Tree

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 mebibytes

Yuuka has a binary tree with vertices which are conveniently labeled with $1,2, \ldots, n$. For each $i \geq 2$, there is an edge between vertices i and $\lfloor i / 2\rfloor$. The i-th vertex has weight w_{i} associated with it, and all weights are distinct.
Consider a subtree of the given tree (a subgraph which is itself a tree) which consists of vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that $w_{v_{1}}<w_{v_{2}}<\cdots<w_{v_{k}}$. The a-median of this subtree is then $w_{v_{\lfloor(k-a+1) / 2\rfloor}}$ for $0 \leq a<k$.
For each $a \in\{0,1,2, \ldots, n-1\}$, find the largest a-median among all subtrees of the given tree.

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains an integer $n\left(1 \leq n \leq 2 \cdot 10^{5}\right)$.
The second line contains n integers $w_{1}, w_{2}, \ldots, w_{n}\left(1 \leq w_{i} \leq n\right.$, and the numbers $w_{1}, w_{2}, \ldots, w_{n}$ are all distinct).
It is guaranteed that the sum of all n does not exceed $2 \cdot 10^{5}$.

Output

For each test case, output n integers $M_{0}, M_{1}, \ldots, M_{n-1}$ where M_{a} denotes the largest a-median.

Example

standard input	standard output
$\begin{array}{llllllllllll} \hline 5 & & & & & & & & \\ 1 & 2 & 3 & 4 & 5 & & & & & \\ 10 & & & & & & & & \\ 9 & 10 & 4 & 2 & 3 & 5 & 7 & 1 & 8 & 6 \end{array}$	

