Problem A. Card Shuffling

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

Yuuka has a deck of n cards labeled with $0, 1, 2, \ldots, (n-1)$.

Initially, the cards are placed in the order p_1, p_2, \ldots, p_n from top to bottom. In each round, if the top card is labeled with x, Yuuka will place it x cards downward, so it becomes the card number (x + 1) in the deck, counting from 1. The relative order of other cards will not be changed.

How many rounds will pass until the card labeled with 0 comes to the top?

Input

The first line contains an integer $n \ (1 \le n \le 32)$.

The second line contains n distinct integers p_1, p_2, \ldots, p_n $(0 \le p_i < n)$.

Output

Output an integer which denotes the number of rounds. If the card labeled with 0 never comes to the top, output "-1" instead.

Examples

standard input	standard output
5	13
1 3 2 4 0	
2	0
0 1	