Problem A. Card Shuffling

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

Yuuka has a deck of n cards labeled with $0,1,2, \ldots,(n-1)$.
Initially, the cards are placed in the order $p_{1}, p_{2}, \ldots, p_{n}$ from top to bottom. In each round, if the top card is labeled with x, Yuuka will place it x cards downward, so it becomes the card number $(x+1)$ in the deck, counting from 1 . The relative order of other cards will not be changed.

How many rounds will pass until the card labeled with 0 comes to the top?

Input

The first line contains an integer $n(1 \leq n \leq 32)$.
The second line contains n distinct integers $p_{1}, p_{2}, \ldots, p_{n}\left(0 \leq p_{i}<n\right)$.

Output

Output an integer which denotes the number of rounds. If the card labeled with 0 never comes to the top, output " -1 " instead.

Examples

	standard input				
5		2	0	13	standard output
2			0		
0	1				

