Problem F. Counting Orders

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

You are given a rooted tree on n vertices numbered from 1 to n. The root of the tree is vertex 1, and for each vertex i ($i \ge 2$), its parent is vertex p_i .

Consider a permutation q_i $(1 \le i \le n)$. We will call this permutation *proper* if, for any vertex v, all its descendants are located to the right of the position of v in permutation q.

You are asked to find the number of proper permutations q_i such that $q_k = v$, taken modulo $10^9 + 7$.

Input

The first line of the input contains a single integer n $(1 \le n \le 5000)$, the number of vertices in the tree. The second line contains n-1 integers p_2, p_3, \ldots, p_n $(1 \le p_i < i)$, the parents of all vertices in the tree except the root. In particular, when n = 1, the second line is present but empty.

The last line contains two integers v and k $(1 \le v, k \le n)$.

Output

Output one integer: the remainder of the number of proper permutations q_i with $q_k = v$ modulo $10^9 + 7$.

Example

standard input	standard output
6	9
1 1 1 2 3	
2 3	

Note

The valid proper permutations for the sample case are:

132456, 132465, 132546, 132564, 132645, 132654, 142356, 142365, 142536.