Problem F. Counting Orders

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 mebibytes

You are given a rooted tree on n vertices numbered from 1 to n. The root of the tree is vertex 1 , and for each vertex $i(i \geq 2)$, its parent is vertex p_{i}.
Consider a permutation $q_{i}(1 \leq i \leq n)$. We will call this permutation proper if, for any vertex v, all its descendants are located to the right of the position of v in permutation q.
You are asked to find the number of proper permutations q_{i} such that $q_{k}=v$, taken modulo $10^{9}+7$.

Input

The first line of the input contains a single integer $n(1 \leq n \leq 5000)$, the number of vertices in the tree.
The second line contains $n-1$ integers $p_{2}, p_{3}, \ldots, p_{n}\left(1 \leq p_{i}<i\right)$, the parents of all vertices in the tree except the root. In particular, when $n=1$, the second line is present but empty.
The last line contains two integers v and $k(1 \leq v, k \leq n)$.

Output

Output one integer: the remainder of the number of proper permutations q_{i} with $q_{k}=v$ modulo $10^{9}+7$.

Example

			standard input		standard output		
6				9			
1	1	1	2	3			
2	3						

Note

The valid proper permutations for the sample case are:
132456, 132465, 132546, 132564, 132645, 132654, 142356, 142365, 142536.

