Digital Root

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	512 megabytes

Chiaki has a B-based digital string s of length n. She has prepared m queries for the string.
In the i-th query, she would like to know the number of substring $s_{l . . r}(1 \leq l \leq r \leq n)$ of s such that after changing at most one digit in $s_{l . . r}$ to some digit in the set A_{i}, the digital root of $s_{l . . r}$ equals to x_{i}.

We should remind you that a digital root $d(x)$ of the B-based digital string x (x may have some leading zeros) is the sum $s(x)$ of all the digits of this number, if $s(x) \leq B-1$, otherwise it is $d(s(x))$. For example, a digital root of the number 6543_{10} is calculated as follows: $d\left(6543_{10}\right)=d\left(6_{10}+5_{10}+4_{10}+3_{10}\right)=d\left(18_{10}\right)=9_{10}, d\left(a b c d_{16}\right)=d\left(2 e_{16}\right)=d\left(10_{16}\right)=1_{16}$.
Note that in this problem we will use the lowercase English letters from ' a ' to ' f ' to represent the digits with values from 10 to 15 .

Input

The first line contains three integers n, m and $B\left(1 \leq n, m \leq 2^{20}, 2 \leq B \leq 16\right)$ - the length of the string, the number of queries and the base of the number.
The second line contains a B-based digital string s of length n.
Each of the following m lines contains a character x_{i} and a B-based string $a_{i}\left(1 \leq\left|a_{i}\right| \leq B\right)$ - the expected value of digital root and the set A_{i}. All characters in a_{i} are distinct.

Output

For each query, output an integer denoting the number of substrings.

Examples

	standard input		standard output
9	2	10	24
123456789	45		
9	12		
8	123456789		
5	10	5	13
0	1234	9	
0	1	9	
1	1	9	
2	1	1	
3	1	10	
4	1	9	
0	1	10	
1	0	6	
2	0		
3	0	0	

