Stone Game

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

Chiaki finds the following interesting stone game: two players start with two non-empty piles of stones. In each turn, the player can choose a pile with an even number of stones and move half of the stones of this pile to the other pile. The game ends if a player cannot move, or if we reach a previously reached position. In the first case, the player who cannot move loses. In the second case, the game is declared a draw.

Given two positive integers n and m, Chiaki would like to know the number of pairs (a, b) $(1 \leq a \leq n, 1 \leq b \leq m)$ such that if initially the two piles have a and b stones respectively, then the first player has a winning strategy, or the game ends with a draw, or the second player has a winning strategy. Since this number may be very large, you are only asked to calculate it modulo $10^{9}+7$.

Input

There are multiple test cases. The first line of the input contains an integer T, indicating the number of test cases. For each test case:
The first line contains a binary string $s\left(1 \leq|s| \leq 10^{6}\right)$ - the binary representation of n without leading zeros.

The second line contains a binary string $t\left(1 \leq|t| \leq 10^{6}\right)$ - the binary representation of m without leading zeros.

It is guaranteed that the sum of the length of binary strings in all test cases will not exceed 2×10^{6}.

Output

For each test case, output three integers: the number of pairs (a, b) such that first player wins, the game ends with a draw or the second player wins, correspondingly.

Example

standard input	standard output	
3	8 24 17	
111	4111668	
111	2546	6689
1111		
1111		
10101010		
1001010		

Note

For the first sample:

- The pairs when first player wins: $(2,2),(2,4),(2,6),(4,2),(4,6),(6,2),(6,4),(6,6)$.
- The pairs when the game ends with draw: $(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(2,7),(3,2),(3,4)$, $(3,6),(4,1),(4,3),(4,5),(4,7),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5),(6,7),(7,2),(7,4),(7,6)$.
- The pairs when the second player wins: $(1,1),(1,3),(1,5),(1,7),(3,1),(3,3),(3,5),(3,7),(4,4)$, $(5,1),(5,3),(5,5),(5,7),(7,1),(7,3),(7,5),(7,7)$.

