

Problem A. Apollonian Network

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	256 mebibytes

An Apollonian network is an undirected graph formed by recursively subdividing a triangle into three smaller triangles.

Yuhao Du has an Apollonian network with weighted edges. And he knows how to find a simple path with the largest possible sum of edge weights. Can you find it too?

Input

The first line of the input contains one integer n: the number of vertices in Yuhao's Apollonian network $(3 \le n \le 250)$.

The next 3(n-2) lines contain a description of the edges of the graph. Each of these lines contains three integers a_i , b_i , c_i , describing an edge between vertices a_i and b_i with weight c_i $(1 \le a_i, b_i \le n, a_i \ne b_i, 0 \le c_i \le 10^6)$.

It is guaranteed that the given graph is an Apollonian network.

Output

Output one integer: the largest sum of edge weights on a simple path in Yuhao's Apollonian network.

Examples

standard input	standard output
3	3
1 2 1	
2 3 1	
3 1 2	
10	35
1 2 4	
234	
3 1 3	
6 1 3	
623	
634	
4 6 4	
4 3 4	
4 2 3	
5 1 3	
563	
524	
10 1 4	
10 3 3	
10 6 3	
7 1 4	
7 10 4	
763	
8 1 3	
834	
8 10 4	
934	
983	
9 10 3	

Note

In the first example, one of the optimal paths is $2 \rightarrow 3 \rightarrow 1$. In the second example, one of the optimal paths is $5 \rightarrow 2 \rightarrow 1 \rightarrow 7 \rightarrow 10 \rightarrow 8 \rightarrow 9 \rightarrow 3 \rightarrow 6 \rightarrow 4$.