Problem A. Apollonian Network

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
256 mebibytes

An Apollonian network is an undirected graph formed by recursively subdividing a triangle into three smaller triangles.

Yuhao Du has an Apollonian network with weighted edges. And he knows how to find a simple path with the largest possible sum of edge weights. Can you find it too?

Input

The first line of the input contains one integer n : the number of vertices in Yuhao's Apollonian network ($3 \leq n \leq 250$).
The next $3(n-2)$ lines contain a description of the edges of the graph. Each of these lines contains three integers a_{i}, b_{i}, c_{i}, describing an edge between vertices a_{i} and b_{i} with weight $c_{i}\left(1 \leq a_{i}, b_{i} \leq n, a_{i} \neq b_{i}\right.$, $0 \leq c_{i} \leq 10^{6}$).
It is guaranteed that the given graph is an Apollonian network.

Output

Output one integer: the largest sum of edge weights on a simple path in Yuhao's Apollonian network.

Examples

		standard input	
3		standard output	
1	2	1	
2	3	1	
3	1	2	
10		35	
1	2	4	
2	3	4	
3	1	3	
6	1	3	
6	2	3	
6	3	4	
4	6	4	
4	3	4	
4	2	3	
5	1	3	
5	6	3	
5	2	4	
10	1	4	
10	3	3	
10	6	3	
7	1	4	
7	10	4	
7	6	3	
8	1	3	
8	3	4	
8	10	4	
9	3	4	
9	8	3	
9	10	3	

Note

In the first example, one of the optimal paths is $2 \rightarrow 3 \rightarrow 1$.
In the second example, one of the optimal paths is $5 \rightarrow 2 \rightarrow 1 \rightarrow 7 \rightarrow 10 \rightarrow 8 \rightarrow 9 \rightarrow 3 \rightarrow 6 \rightarrow 4$.

