Problem B. Bitwise Xor

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 mebibytes

Zhong Ziqian got an integer array $a_{1}, a_{2}, \ldots, a_{n}$ and an integer x as birthday presents.
Every day after that, he tried to find a non-empty subsequence of this array $1 \leq b_{1}<b_{2}<\ldots<b_{k} \leq n$, such that for all pairs (i, j) where $1 \leq i<j \leq k$, the inequality $a_{b_{i}} \oplus a_{b_{j}} \geq x$ held. Here, \oplus is the bitwise exclusive-or operation.
Of course, every day he must find a different subsequence.
How many days can he do this without repeating himself? As this number may be very large, output it modulo 998244353 .

Input

The first line of the input contains two integers n and $x\left(1 \leq n \leq 300000,0 \leq x \leq 2^{60}-1\right)$. Here, n is the size of the array.
The next line contains n integers $a_{1}, a_{2}, \ldots, a_{n}$: the array itself $\left(0 \leq a_{i} \leq 2^{60}-1\right)$.

Output

Output one integer: the number of subsequences of Ziqian's array such that bitwise xor of every pair of elements is at least x, modulo 998244353.

Examples

standard input	standard output
30	7
012	
32	5
012	
33	4
012	
74	35
11558313	

Note

In the first example, all $2^{3}-1$ non-empty subsequences are suitable.
in the second example, two non-empty subsequences are not suitable, it is $b=[1,2]$ and $b=[1,2,3]$, that is because $a_{1} \oplus a_{2}=0 \oplus 1=1$ which is smaller than 2 .
In the third example, $b=[1], b=[2], b=[3], b=[2,3]$ are suitable.

