

Problem D. Determinant

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	256 mebibytes

Um_nik has a simple connected undirected graph with the following property:

For any subset A of k + 1 vertices of the graph, there exist two vertices $a, b \in A$ and some edge e, such that all paths from a to b contain edge e.

Please help him find the determinant of the adjacency matrix of his graph modulo 998 244 353.

Input

The first line contains three integers n, m, k: the number of vertices and edges in the graph and the given parameter $(1 \le n \le 25\,000, n-1 \le m \le 500\,000, 1 \le k \le 25)$.

The next *m* lines describe edges of the graph. Each of them contains two integers *u* and *v*: the two vertices connected by an edge $(1 \le u, v \le n, u \ne v)$.

It is guaranteed that this graph is connected and also for any subset A of k+1 vertices of the graph, there exist two vertices $a, b \in A$ and an edge e such that all paths from a to b contain edge e. It is guaranteed that this graph doesn't contain multiple edges.

Output

Print a single integer: the determinant of Um_nik graph's adjacency matrix modulo 998 244 353.

Examples

standard input	standard output
4 3 1	1
1 2	
2 3	
3 4	
6 6 3	998244352
2 3	
5 6	
2 5	
1 2	
3 4	
6 2	
10 15 10	35
1 8	
1 7	
6 7	
2 8	
6 9	
4 9	
4 10	
3.8	
9 10	
8 10	
3.5	
2.7	

Note

