Problem D. Determinant

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	256 mebibytes

Um_nik has a simple connected undirected graph with the following property:
For any subset A of $k+1$ vertices of the graph, there exist two vertices $a, b \in A$ and some edge e, such that all paths from a to b contain edge e.
Please help him find the determinant of the adjacency matrix of his graph modulo 998244353.

Input

The first line contains three integers n, m, k : the number of vertices and edges in the graph and the given parameter ($1 \leq n \leq 25000, n-1 \leq m \leq 500000,1 \leq k \leq 25$).
The next m lines describe edges of the graph. Each of them contains two integers u and v : the two vertices connected by an edge ($1 \leq u, v \leq n, u \neq v$).
It is guaranteed that this graph is connected and also for any subset A of $k+1$ vertices of the graph, there exist two vertices $a, b \in A$ and an edge e such that all paths from a to b contain edge e. It is guaranteed that this graph doesn't contain multiple edges.

Output

Print a single integer: the determinant of Um_nik graph's adjacency matrix modulo 998244353.

Examples

	standard input	
4	3	1
1	2	standard output
2	3	1
3	4	
6	6	3
2	3	99844352
5	6	
2	5	
1	2	
3	4	
6	2	
10	15	10
1	8	
1	7	
6	7	
2	8	
6	9	
1	2	
4	9	
4	10	
4	6	
5	6	
3	8	
9	10	10
8	5	
2	7	

Note

