Problem H. Honorable Mention

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	256 mebibytes

Ilya Zban has an array $a_{1}, a_{2}, \ldots, a_{n}$. A segment $[l \ldots r]$ of the array is the array $a_{l}, a_{l+1}, \ldots, a_{r}$.
Ilya has q ordered triples of the form (l, r, k), where $1 \leq l \leq r \leq n$ and $1 \leq k \leq r-l+1$. For each such triple, he asked you to answer the following query: "what is the largest sum of sums of elements of k non-empty non-intersecting subsegments of the segment $[l \ldots r]$?".

Input

The first line of input contains two integers n and q : the number of elements in the array and the number of queries $(1 \leq n, q \leq 35000)$.
The second line contains n space-separated integers $a_{1}, a_{2}, \ldots, a_{n}$: the given array ($-35000 \leq a_{i} \leq 35000$).
The next q lines contain queries. Each of them contains three integers l, r, k : the given segment and the number of non-intersecting subsegments on it that you should find $(1 \leq l \leq r \leq n, 1 \leq k \leq r-l+1)$.

Output

Output q integers on separate lines: the answers to the queries.

Examples

standard input					standard output
5	5		4	6	
-1	2	-3	4	-5	6
1	5	1		5	
1	5	2		-3	
1	5	3			
1	5	4		35	
1	5	5			
5	1				
7	7	7	7	7	
1	5	1			

