Problem J. Jiry Matchings

Input file:	standard input
Output file:	standard output
Time limit:	6 seconds
Memory limit:	512 mebibytes

Ruyi Ji has a tree where the vertices are numbered by integers from 1 to n and each edge has a weight. For each $k \leq(n-1)$, he asked you to find the largest total weight of a matching with k edges if it exists.

Input

The first line of input contains one integer n : the number of vertices in the tree ($2 \leq n \leq 200000$).
Each of the next $n-1$ lines contains three integers u_{i}, v_{i}, w_{i}, describing an edge from u_{i} to v_{i} with weight w_{i} in the tree $\left(1 \leq u_{i}, v_{i} \leq n, u_{i} \neq v_{i},-10^{9} \leq w_{i} \leq 10^{9}\right)$.
It is guaranteed that the given graph is a tree.

Output

Output $n-1$ integers: the largest weights of the matchings with $1,2, \ldots, n-1$ edges. If there is no such matching for the current k, print "?" instead.

Examples

standard input	standard output
$\begin{array}{lll} \hline 5 & & \\ 1 & 2 & 3 \\ 2 & 3 & 5 \\ 2 & 4 & 4 \\ 3 & 5 & 2 \end{array}$	56 ? ?
$\begin{array}{llll} \hline 10 & \\ 2 & 8 & -5 \\ 5 & 10 & 5 \\ 3 & 4 & -5 \\ 1 & 6 & 5 \\ 3 & 9 & 5 \\ 1 & 7 & -3 \\ 4 & 8 & -5 \\ 10 & 8 & -5 \\ 1 & 8 & -3 \end{array}$	$5101510 \text { ? ? ? ? ? }$
$\begin{array}{lll} \hline 2 & & \\ 1 & 2 & 35 \end{array}$	35

Note

In the first sample, with $k=1$ you should take edge $(2,3)$ with weight 5 . And with $k=2$ you should take two edges, $(2,4)$ and $(3,5)$, with total weight 6 . There are no matchings with a greater number of edges.

