Problem K. K-pop Strings

Input file:	standard input
Output file:	standard output
Time limit:	7 seconds
Memory limit:	512 mebibytes

A substring $s[l . . r]$ is a tandem repeat if $r-l+1$ is even and $s\left[l \ldots \frac{l+r-1}{2}\right]=s\left[\frac{l+r+1}{2} \ldots r\right]$.
Recently Gennady came up with a method to calculate the number of tandem repeats in a string using suffix structures, and now he came up with a new type of strings based on tandem repeats. Gennady thinks that string s of length n is a K-pop string if there are no tandem repeats of length $\geq n-k$.

Help him find the number of K-pop strings consisting only of the characters ' 1 ', ' 2 ', ..., ' 9 ', ' a ', 'b', ..., ' z ', modulo 998244353.

Input

The first line of input contains two integers n and k : the required length of string and the parameter $(1 \leq n \leq 100,0 \leq k \leq 16)$.

Output

Output one integer: the number of K-pop strings of length n for the given k, consisting only of nonzero digits and lowercase alphabetic characters, modulo 998244353.

Examples

standard input	standard output
116	35
40	1499400
155	911125634

Note

The answer for the first example is 35 because all strings of length 1 are possible: " 1 ", " 2 ", ..., " 9 ", "a", "b", ..., "z".
The answer for the second example is $35^{4}-35^{2}$.

