## Problem G. Ald

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 4 seconds |
| Memory limit: | 512 mebibytes |

You are given a tree. The tree has $n$ vertices, labeled from 1 to $n$.
Let us denote the path between vertices $a$ and $b$ as $(a, b)$. Let the $d$-set of a path be the set of vertices on the tree located within a distance $\leq d$ from at least one vertex of the path. For example, the 0 -set of a path is the set of its vertices. The distance between vertices is the number of edges on the path between these vertices.
Let $S$ be a multiset of tree paths. Initially, $S$ is empty. Your task is to process the following queries:

- "1 $u$ "): add path $(u, v)$ into $S(1 \leq u, v \leq n)$.
- " $2 u v$ ": delete a single path $(u, v)$ from $S(1 \leq u, v \leq n)$. Note that $(u, v)$ and $(v, u)$ denote the same path. For example, if $S=\{(2,3),(2,3)\}$, then after a query "2 32 ", we will have $S=\{(2,3)\}$. Before this query, it is guaranteed that at least one path $(u, v)$ or $(v, u)$ is present in $S$.
- "3 $d$ ": print the size of intersection of $d$-sets of all paths from $S(0 \leq d \leq n)$. If $S$ is empty, print 0 .


## Input

The first line contains an integer $t$, the number of test cases ( $1 \leq t \leq 10^{4}$ ). The test cases follow.
The first line of each test case contains two integers $n$ and $q\left(1 \leq n, q \leq 10^{5}\right)$, the number of vertices in the tree and the number of queries.

Each of the following $n-1$ lines contains two integers $u_{i}$ and $v_{i}$ : indices of vertices connected by the $i$-th edge of the tree $\left(1 \leq u_{i}, v_{i} \leq n\right)$.
The following $q$ lines contain queries in the format described in the statement.
The sum of $n$ over all test cases does not exceed $10^{5}$. The sum of $q$ over all test cases does not exceed $10^{5}$.

## Output

For each query of the third type, output a single line with the answer.

## Example

|  | standard input |  |
| :--- | :--- | :--- |
| 1 |  | 0 |
| 8 | 7 |  |
| 1 | 2 |  |
| 1 | 3 |  |
| 3 | 4 |  |
| 2 | 5 |  |
| 4 | 6 |  |
| 1 | 7 |  |
| 6 | 8 |  |
| 3 | 1 |  |
| 1 | 7 | 8 |
| 3 | 1 |  |
| 2 | 7 | 8 |
| 1 | 8 | 6 |
| 1 | 7 | 7 |
| 3 | 3 |  |

