Almost Prefix Concatenation

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
512 megabytes

A string $A=a_{1} a_{2} \cdots a_{n}$ of length n is a concatenation of n characters $a_{1}, a_{2}, \ldots, a_{n}$, and its length is denoted by $|A|$. Similarly, the concatenation of two strings $A=a_{1} a_{2} \cdots a_{n}$ and $B=b_{1} b_{2} \cdots b_{m}$ is $a_{1} a_{2} \cdots a_{n} b_{1} b_{2} \cdots b_{m}$, denoted by $A+B$.
The edit distance between two strings $A=a_{1} a_{2} \cdots a_{n}$ and $B=b_{1} b_{2} \cdots b_{n}$ of the same length n is the number of indices i such that $a_{i} \neq b_{i}$.
We call the string A formed by the first k characters of another string $B(k \leq|B|)$ as the k-th prefix of B, and a string P as an almost prefix of another string Q if $|P| \leq|Q|$ and the edit distance between P and the $|P|$-th prefix of Q is at most 1 .
Given two strings S and T consisting of lowercase English letters, you are asked to find all ways to split S into many parts such that each part is a non-empty almost prefix of string T, and then report the sum of the squared number of parts of all ways in modulo 998244353. More formally, let $S=P_{1}+P_{2}+\ldots+P_{n}$ be a possible way, you are asked to calculate

$$
\left(\sum_{\substack{S=P_{1}+P_{2}+\ldots+P_{n} \\ \forall_{i=1,2, \ldots, n} P_{i} \text { is an almost prefix of } T}} n^{2}\right) \bmod 998244353
$$

Input

The first line of the input contains a string $S(1 \leq|S| \leq 1000000)$, consisting of only lowercase English letters.
The next line contains a string $T(1 \leq|T| \leq 1000000)$, consisting of only lowercase English letters.

Output

Print a single line containing a single integer: the sum of the squared number of parts of all ways in modulo 998244353.

Examples

standard input	standard output
ababaab aba	473
ac ccpc	5

Note

In the first sample case ($S=$ ababaab, $T=\mathrm{aba}$), there are 19 ways to split:

- 1 way of 3 parts, which is $a b+a b a+a b ;$
- 6 ways of 4 parts, such as $a+b+a b a+a b ;$
- 7 ways of 5 parts, such as $a+b+a b+a+a b$;
- 4 ways of 6 parts, such as $a+b+a+b+a+a b ;$
- 1 way of 7 parts, which is $\mathrm{a}+\mathrm{b}+\mathrm{a}+\mathrm{b}+\mathrm{a}+\mathrm{a}+\mathrm{b}$.

Therefore, the result for the first sample case is $\left(3^{2}+6 \times 4^{2}+7 \times 5^{2}+4 \times 6^{2}+7^{2}\right) \bmod 998244353=473$.

