Discrete Fourier Transform

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

Given a sequence of integer $f_{0}, f_{1}, \ldots, f_{n-1}$, the discrete Fourier transform gives a sequence of complex numbers $F_{0}, F_{1}, \ldots, F_{n-1}$ that

$$
F_{t}=\sum_{s=0}^{n-1} f_{s} e^{-2 \pi i s t / n}
$$

for each $t=0,1, \ldots, n-1$, where $e^{i \theta}=\cos \theta+i \sin \theta$, and i is the imaginary unit that $i^{2}=-1$.
You may reset f_{k} to any integer value to minimize the maximum value among $\left|F_{0}\right|,\left|F_{1}\right|, \ldots,\left|F_{n-1}\right|$, where $|z|=|p+q i|=\sqrt{p^{2}+q^{2}}(p, q \in \mathbb{R})$ is the modulus of the complex number z.

Input

The first line contains two integers $n(1 \leq n \leq 2000)$ and $k(0 \leq k<n)$.
The second line contains n integers $f_{0}, f_{1}, \ldots, f_{n-1}\left(-2000 \leq f_{i} \leq 2000\right)$.

Output

Output a line containing a single real number, indicating the minimum of the maximum value among $\left|F_{0}\right|,\left|F_{1}\right|, \ldots,\left|F_{n-1}\right|$ after resetting f_{k} to any integer value.
Your answer is acceptable if its absolute or relative error does not exceed 10^{-9}. Formally speaking, suppose that your output is a and the jury's answer is b, your output is accepted if and only if $\frac{|a-b|}{\max \{1,|b|\}} \leq 10^{-9}$.

Example

	standard input	standard output		
3	2	2.0		
1	1	0		

