GCD of Pattern Matching

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

For any positive integer x, its m-based representation is a string of digits $d_{n-1} d_{n-2} \cdots d_{1} d_{0}$ where $x=\sum_{i=0}^{n-1} d_{i} m^{i}, 0<d_{n-1}<m$, and $\forall_{i=0,1, \ldots, n-2} 0 \leq d_{i}<m$.
Let Σ be the set of all possible characters. We call that a string $S=s_{1} s_{2} \cdots s_{n}$ matches with a pattern $P=p_{1} p_{2} \cdots p_{n}$ if and only if there exists a mapping function $f: \Sigma \rightarrow \Sigma$ such that $\forall_{i=1,2, \ldots, n} f\left(s_{i}\right)=p_{i}$ and $\forall_{a, b \in \Sigma, a \neq b} f(a) \neq f(b)$.

Given an integer m and a pattern P consisting of lowercase English letters, find all positive integers in m-based representation that match the pattern, and report their greatest common divisor (GCD) in 10-based representation.

It is guaranteed for each test case that there always exists at least one integer whose m-based representation matches the pattern.

Input

The first line of the input contains a single integer $T(1 \leq T \leq 500000)$, denoting the number of test cases.

Each of the following T lines describes a test case and contains an integer m and a string $P(2 \leq m \leq 16$, $1 \leq|P| \leq 16)$, separated by a single space.

Output

For each of the T test cases, print a single line containing a single integer: the GCD of all matched positive integers (in 10-based representation).

Example

standard input	standard output
5	10001
10 ccpcccpc	10101
10 cpcpcp	1
10 cpc	65
4 cpccpc	3
4 dhcp	

Note

For the last sample case, all integers of length 4 with no duplicate digits in 4-based representation can match dhcp, whose digits have a constant sum $0+1+2+3=6$ (e.g. 1023, 1302, 3210). Together with $\sum_{i=0}^{n-1} d_{i} 4^{i} \equiv \sum_{i=0}^{n-1} d_{i}(\bmod 3)$ and $\operatorname{gcd}(1023,3210)=3$, we can conclude the answer is 3 .

