Find the Gap

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 megabytes

You are given n points in the 3D space. Please find two parallel planes such that all the n points are inside the gap of the two parallel planes, and the length of the gap is minimized.

Input

The first line of the input contains a single integer n $(1 \le n \le 50)$, denoting the number of points.

Each of the following n lines contains three integers x_i , y_i and z_i $(1 \le x_i, y_i, z_i \le 10\,000)$, describing a point (x_i, y_i, z_i) . It is guaranteed that all the n points are pairwise distinct.

Output

Print a single line containing a single real number: the minimum possible length of the gap with an absolute or relative error of at most 10^{-9} .

Precisely speaking, assume that your answer is a and the jury's answer is b. Your answer will be considered correct if and only if $\frac{|a-b|}{\max\{1,|b|\}} \leq 10^{-9}$.

Examples

standard input	standard output
8	1.00000000000000
1 1 1	
1 1 2	
1 2 1	
1 2 2	
2 1 1	
2 1 2	
2 2 1	
222	
5	0.707106781186548
1 1 1	
1 2 1	
1 1 2	
1 2 2	
2 1 1	