## Find the Gap

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 1 second |
| Memory limit: | 512 megabytes |

You are given $n$ points in the 3D space. Please find two parallel planes such that all the $n$ points are inside the gap of the two parallel planes, and the length of the gap is minimized.

## Input

The first line of the input contains a single integer $n(1 \leq n \leq 50)$, denoting the number of points.
Each of the following $n$ lines contains three integers $x_{i}, y_{i}$ and $z_{i}\left(1 \leq x_{i}, y_{i}, z_{i} \leq 10000\right)$, describing a point $\left(x_{i}, y_{i}, z_{i}\right)$. It is guaranteed that all the $n$ points are pairwise distinct.

## Output

Print a single line containing a single real number: the minimum possible length of the gap with an absolute or relative error of at most $10^{-9}$.
Precisely speaking, assume that your answer is $a$ and the jury's answer is $b$. Your answer will be considered correct if and only if $\frac{|a-b|}{\max \{1,|b|\}} \leq 10^{-9}$.

## Examples

|  | standard input | standard output |  |
| :--- | :--- | :--- | :--- |
| 8 |  |  | 1.000000000000000 |
| 1 | 1 | 1 |  |
| 1 | 1 | 2 |  |
| 1 | 2 | 1 |  |
| 1 | 2 | 2 |  |
| 2 | 1 | 1 |  |
| 2 | 1 | 2 |  |
| 2 | 2 | 1 |  |
| 2 | 2 | 2 |  |
| 5 |  |  |  |
| 1 | 1 | 1 |  |
| 1 | 2 | 1 |  |
| 1 | 1 | 2 |  |
| 1 | 2 | 2 |  |
| 2 | 1 | 1 |  |

