Sequence Shift

Input file: standard input
Output file: standard output
Time limit: $\quad 2.5$ seconds
Memory limit: 512 megabytes
You are given two sequences of length $n:\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ and $\left[b_{1}, b_{2}, \ldots, b_{n}\right]$. The value of $f(a, b)$ is defined as $f(a, b)=\max \left\{a_{i}+b_{i}\right\}$, where $1 \leq i \leq n$.
The sequence b can be shifted. You will then be given q operations, each operation can be divided into the following two steps:

- First, shift the sequence b to the left by one position, and drop the first element, so the sequence b^{\prime} will be $\left[b_{1}^{\prime}=b_{2}, b_{2}^{\prime}=b_{3}, \ldots, b_{n-1}^{\prime}=b_{n}\right]$.
- Then, append v to the rightmost place of b, so the sequence b^{\prime} will be $\left[b_{1}^{\prime}=b_{2}, b_{2}^{\prime}=b_{3}, \ldots\right.$, $\left.b_{n-1}^{\prime}=b_{n}, b_{n}^{\prime}=v\right]$.

In this problem, your task is to figure out the value of $f(a, b)$ before/after each operation.

Input

The first line of the input contains two integers n and $q(1 \leq n \leq 1000000,0 \leq q \leq 1000000)$, denoting the length of the sequences and the number of operations.

The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}$, denoting the sequence a.
The third line contains n integers $b_{1}, b_{2}, \ldots, b_{n}$, denoting the initial sequence b.
Each of the next q lines contains a single integer v, denoting the value that will be appended in each operation. The value of v will be encrypted in order to enforce online processing.
It is guaranteed that all the values of a_{i}, b_{i} and v are chosen uniformly at random from integers in the range $\left[1,10^{9}\right]$. The randomness condition does not apply to the sample test(s), but your solution must pass the sample test(s) as well.
Let last be the previous value of $f(a, b)$ that you answered. For each operation, the actual value of v is $v \oplus$ last. In the expressions above, the symbol " \oplus " denotes the bitwise exclusive-or operation. Also, note that the constraints described in the statement above apply to the corresponding parameters only after decryption, the encrypted values are not subject to those constraints.

Output

Print $q+1$ lines.
Output a single integer in the first line, denoting the initial value of $f(a, b)$.
In the k-th line $(2 \leq k \leq q+1)$, output a single integer denoting the current value of $f(a, b)$ after the ($k-1$)-th operation.

Example

				standard input		standard output	
5	3				11		
1	4	3	2	5		13	
7	5	8	3	2		16	
3					25		
6							
4							

