Partially Free Meal

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 megabytes

A new restaurant is opened in Byteland. To attract more customers, the meal is partially free. Specifically, there are n types of dishes on sale, labeled by $1,2, \ldots, n$. Each dish can not be ordered more than once. For the i-th dish, its basic price is a_{i} dollars, and its event price is b_{i} dollars. Assume you have ordered k dishes $p_{1}, p_{2}, \ldots, p_{k}\left(1 \leq p_{i} \leq n, p_{i}<p_{i+1}\right)$, the total amount of dollars that you need to pay for is:

$$
\sum_{i=1}^{k} a_{p_{i}}+\max _{i=1}^{k}\left\{b_{p_{i}}\right\}
$$

You are a customer at this restaurant, you decide to order exactly k dishes, what's the minimum possible amount of dollars that you need to pay for?

Input

The first line of the input contains a single integer $n(1 \leq n \leq 200000)$, denoting the number of dishes.
Each of the following n lines contains two integers a_{i} and $b_{i}\left(1 \leq a_{i}, b_{i} \leq 10^{9}\right)$, denoting the basic price and the event price of each dish.

Output

Print n lines, the k-th $(1 \leq k \leq n)$ of which containing an integer, denoting the minimum possible amount of dollars that you need to pay for when you order exactly k dishes.

Example

	standard input		standard output
3	5	7	
2	3	7	11
3	7	16	

