Problem A. Abstract

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

You have a DAG (Directed Acyclic Graph) with n nodes and m edges. The graph has exactly one node x that has no outgoing edges. The i-th node has an integer value a_{i} in it.

Every second, the following happens:

- For each node i, let $b_{i}=a_{i}$.
- For each node i, let $a_{i}=0$.
- For each node i, and each node j such that there is an edge from i to j, the value b_{i} is added to a_{j}.
- The value $\left\lfloor\frac{b_{x}}{2}\right\rfloor$ is added to a_{x}.

Find the first moment of time when all a_{i} become 0 . Since the answer can be very large, output it modulo 998244353.

Input

The first line contains two integers n and $m\left(1 \leq n \leq 10^{4} ; 1 \leq m \leq 10^{5}\right)$: the number of vertices and edges in the graph.

The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i} \leq 10^{9}\right)$: the values in the vertices.
Each of the following m lines contains two integers u and $v(1 \leq u, v \leq n)$ which represent a directed edge from u to v.
It is guaranteed that the graph is a DAG with no multi-edges, and there is exactly one node that has no outgoing edges.

Output

Print a line with a single integer: the first moment of time when all a_{i} become 0 , modulo 998244353 .

The 2nd Universal Cup
Stage 4: Taipei, October 7-8, 2023

Examples

standard input	standard output
32	3
111	
12	
23	
68	8
114514	
14	
15	
23	
25	
34	
45	
46	
56	
56	9
72366	
12	
14	
23	
34	
35	
45	

Note

Hi, so to me seems like a notorious coincidence. (Codeforces 1704E)

