Uni Cup

Problem A. Abstract

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

You have a DAG (Directed Acyclic Graph) with n nodes and m edges. The graph has exactly one node x that has no outgoing edges. The *i*-th node has an integer value a_i in it.

Every second, the following happens:

- For each node i, let $b_i = a_i$.
- For each node i, let $a_i = 0$.
- For each node i, and each node j such that there is an edge from i to j, the value b_i is added to a_j .
- The value $\lfloor \frac{b_x}{2} \rfloor$ is added to a_x .

Find the first moment of time when all a_i become 0. Since the answer can be very large, output it modulo 998 244 353.

Input

The first line contains two integers n and m $(1 \le n \le 10^4; 1 \le m \le 10^5)$: the number of vertices and edges in the graph.

The second line contains n integers a_1, a_2, \ldots, a_n $(0 \le a_i \le 10^9)$: the values in the vertices.

Each of the following m lines contains two integers u and v $(1 \le u, v \le n)$ which represent a directed edge from u to v.

It is guaranteed that the graph is a DAG with no multi-edges, and there is exactly one node that has no outgoing edges.

Output

Print a line with a single integer: the first moment of time when all a_i become 0, modulo 998 244 353.

Examples

standard input	standard output
3 2	3
2 3	
6 8	8
1 1 4 5 1 4	
1 4	
1 5	
2 3	
2 5	
3 4	
4 5	
4 6	
5 6	
5 6	9
7 2 3 6 6	
1 2	
1 4	
2 3	
34	
3 5	
4 5	

Note

Hi, so to me seems like a notorious coincidence. (Codeforces 1704E)