

Day 1: Songyang Chen Contest 2 37th Petrozavodsk Programming Camp, Summer 2019, Friday, August 23, 2019

Problem B. Nonsense Time

Input file: standard input
Output file: standard output

Time limit: 12 seconds Memory limit: 512 mebibytes

You a given a permutation p_1, p_2, \ldots, p_n of size n. Initially, all elements in p are frozen. There will be n stages that these elements will become available one by one. On stage i, the element p_{k_i} will become available.

For each i, find the longest increasing subsequence among available elements after the first i stages.

Input

The first line of the input contains an integer T ($1 \le T \le 3$), denoting the number of test cases.

In each test case, there is one integer n ($1 \le n \le 50\,000$) on the first line, denoting the size of permutation.

In the second line of each test case, there are n distinct integers p_1, p_2, \ldots, p_n $(1 \le p_i \le n)$, denoting the permutation.

In the third line of each test case, there are n distinct integers k_1, k_2, \ldots, k_n $(1 \le k_i \le n)$, describing each stage.

It is guaranteed that p_1, p_2, \ldots, p_n and k_1, k_2, \ldots, k_n are generated uniformly at random among all possible permutations of the given size.

Output

For each test case, print a single line containing n integers, where the i-th integer denotes the length of the longest increasing subsequence among available elements after the first i stages.

Example

standard input	standard output
1	1 1 2 3 3
5	
2 5 3 1 4	
1 4 5 3 2	