Problem D. Radar Scanner

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 mebibytes

There are n rectangle radar scanners on the ground. Their sides are all parallel to the coordinate axes. Each scanner covers some grid squares on the ground. The i-th scanner covers all the squares (x, y) satisfying $x_{i, 1} \leq x \leq x_{i, 2}$ and $y_{i, 1} \leq y \leq y_{i, 2}$.

Today, the radar system is facing a critical low-power problem. You need to choose exactly three scanners such that there exists a square covered by all scanners.

Your task is to count how many tuples (i, j, k) you can choose so that $1 \leq i<j<k \leq n$ and there exists a square covered by all three scanners i, j, and k.

Input

The first line of the input contains an integer $T(1 \leq T \leq 10)$, denoting the number of test cases.
Each test case starts with a line containing an integer $n(3 \leq n \leq 100000)$, denoting the number of radar scanners.
Each of the next n lines contains four integers, $x_{i, 1}, y_{i, 1}, x_{i, 2}$, and $y_{i, 2}\left(1 \leq x_{i, 1} \leq x_{i, 2} \leq 1000\right.$, $1 \leq y_{i, 1} \leq y_{i, 2} \leq 1000$), describing the i-th radar scanner.

Output

For each test case, print a single line containing a single integer: the number of possible tuples.

Example

standard input							standard output
2				0			
3				4			
3	1	3	1				
1	1	2	3				
2	1	3	2				
5							
1	1	4	5				
2	1	3	2				
2	2	3	3				
4	5	4	5				
1	2	2	4				

